Invest in AI's Tailwinds: The essential question for any AI investment is: "Does this business get better as foundation models improve?" Companies fighting against the current of AI's scaling laws are on the wrong side of a powerful trade.
The "Mag 7" Will Expand, Not Just Turn Over: AI is not a zero-sum game for incumbents. The total addressable market is set to 10x as AI drives labor costs toward zero, creating room for a "Mag 25" and turning today's $500B companies into tomorrow's $5T behemoths.
Private Market Alpha Exists, But Edge is Paramount: The private AI market cap is a mere ~$700B, signaling massive growth potential. However, like in crypto, investors must be paranoid about their "edge," as the best deals require deep ecosystem access to avoid negative selection.
**AI Isn't a Feature; It's a New Infrastructure Primitive.** For the first time, developers are outsourcing logic, not just resources. This fundamentally changes how software is built, valued, and sold.
**Abandon Zero-Sum Thinking.** The AI market is in a massive expansion phase, not a consolidation battle. Value is accruing at every layer of the stack simultaneously; assuming one layer's gain is another's loss is a flawed thesis.
**The Future is More Developers, Not Fewer.** AI tools augment productivity and lower the barrier to entry. This elevates the developer's role to focus on product design and workflow definition—the *real* hard problem in software.
**A Killer Value Prop:** Chutes makes deploying powerful AI models 85% cheaper and as easy as building a website on Squarespace.
**The Investor's Dilemma:** While all revenue is used to buy back the Chutes alpha token, this currently covers only 10% of the daily token emissions. The token's price stability is heavily dependent on external market demand outstripping this inflation.
**Watch for Catalysts:** Two key events could dramatically increase buy pressure: the imminent launch of BitTensor subnet tokens on Solana and an anticipated wave of institutional capital from newly formed crypto hedge funds.
**Specialization Unlocks Performance.** ZEUS proves that a decentralized network of specialized AI agents can outperform monolithic, state-of-the-art models, achieving a nearly 40% lower error rate in weather forecasting.
**Revenue Sharing is the Next Evolution.** The plan to distribute API revenue directly to network participants in stablecoins represents a major step toward sustainable subnet economies, moving beyond token buybacks and emission-based rewards.
**The Valuation Gap is the Opportunity.** Despite massive potential, subnets have extremely low market caps compared to their Web2 equivalents. For long-term believers, this asymmetry presents a compelling, albeit early, investment thesis.
Human Intelligence is the Ultimate Moat: In an era of synthetic data, Dojo is creating a defensible moat by generating proprietary, high-quality human preference data. This is the raw material for the next generation of fine-tuned, specialized models.
A New Paradigm for Validation: Dojo’s mechanism of using subtle "perturbations" to test labelers is a breakthrough. It solves the cold start problem of validating subjective human feedback in a decentralized network.
The Future is Human-Agentic Collaboration: Dojo is evolving from a data-generation subnet to a platform for human-agentic workflows, with applications in robotics, video analytics, and 3D generation. In the long term, it aims to be a crucial tool for aligning AI with human values.
Your Pricing Model Is Now a Dynamic Weapon. The five-year pricing plan is dead. You must build the infrastructure and culture for constant experimentation and rapid iteration. If you’re not re-evaluating your model quarterly, you're falling behind.
This Is a CEO-Level Mandate. Shifting to usage-based pricing is a full-company transformation that requires top-down vision. The CEO must act as the "pricing dictator" to align sales, product, and finance around a unified strategy of value creation and capture.
Your Product Team Now Owns Revenue. In a usage-based world, the core value metric *is* your revenue. Product and engineering teams must become obsessed with driving the specific usage that customers pay for, making their impact on the bottom line completely objective.
AI as a System, Not a Tool: Advanced AI art projects are not just prompt-driven tools but autonomous systems. They use feedback loops (DAOs, user interaction) to develop their own "taste" and creative trajectory, aiming for a level of agency beyond simple human puppeteering.
AI Reveals Human Vulnerabilities: AI companions act as a social mirror, showing that humans fundamentally crave connection and non-judgmental spaces. We are turning to AI to fulfill core needs that are often unmet in our human-to-human relationships.
The Artist's Dilemma: Adapt or Perish: Resisting AI is becoming a losing battle. The future for artists isn't about competing with AI on replication but on finding what AI can't do, critiquing it from within, or carving out a niche for "100% human-made" work in a world of synthetic media.
Benchmarks are broken. The ML community can no longer rely on leaderboards as a proxy for truth. The new frontier is developing robust, qualitative explanations for why models succeed or fail.
Embrace the illusion. The most effective models aren’t finding universal laws but are constructing powerful, computationally efficient illusions of them. Progress lies in refining these illusions, not in a futile search for Platonic perfection.
Think like a physicist. The future of foundational AI research is to treat models as complex physical systems. The task is to design parametric models where stochastic processes, like SGD, can efficiently "relax" into a state that approximates the data distribution.
**Incumbent Advantage is Real:** Existing SAS companies with API-first platforms and deep domain knowledge are well-positioned to leverage AI as a TAM-expanding, sustaining innovation.
**Startups Should Hunt Greenfields:** The biggest disruption will happen in unstructured industries (legal, healthcare) that were previously resistant to software. This is where new, AI-native giants will be born.
**The New Bottleneck is Human:** The speed of AI adoption is no longer limited by technology, but by the organization's ability to adapt its workflows and people. The most valuable skill is now managing agents, not just tasks.
Efficiency ≠ Centralization: Coordinated, rapid bug fixes are signs of an active, aligned ecosystem, not inherent centralization.
L1 Utility is Paramount: Both Ethereum and Solana ecosystems depend on their base layers being genuinely useful and economically viable to support L2s and broader application development.
Performance Drives Decentralization: Contrary to the traditional trilemma, the most performant L1 (attracting the most activity and thus revenue for validators) will likely become the most decentralized due to stronger economic incentives for participation.
JitoSol's Institutional Edge: JitoSol’s design—autonomy, yield-bearing, and reduced counterparty risk—positions it as attractive institutional-grade collateral and a scalable yield product on Solana.
Sustainable Systems Over Subsidies: Long-term value in crypto infrastructure and services like market making will come from robust, economically sound systems, not short-term, unsustainable incentives.
Solana's Determinism Drive: Solana's push for greater network determinism (predictable transaction outcomes) directly addresses a core institutional need, potentially unlocking further capital allocation.
Tariff Turmoil Persists: Despite calming rhetoric, the haphazard US tariff rollout creates ongoing uncertainty, with potential for significant market impact if key sectors like AI chips are targeted.
ETH's Uphill Battle: Ethereum faces significant headwinds in sentiment and relative performance; its path to renewed relevance depends on attracting major institutional adoption.
Momentum is King in Crypto: Crypto markets, including assets like XRP (viewed as a short-term trade) and even Doge (noted for technicals), are primarily driven by attention and momentum, not traditional valuation metrics.
**Saylor's Gambit is Bitcoin's Sword of Damocles:** MicroStrategy's leveraged Bitcoin accumulation is a major systemic risk; a blow-up could trigger a severe market downturn.
**Trade Fundamentals, Not Just Narratives:** Focus on assets showing real usage or fitting strong themes (RWA, AI, DeFi yield) as the market gets selective. ETH remains fundamentally challenged despite price bounces.
**Choppy Waters Ahead, Cash is King (Again):** Expect market consolidation. Reduce leverage, hold some cash, and look for dips in strong assets (like Tao) or opportunities to short weak ones (like ETH) – but avoid shorting in euphoric breakouts.
Institutional Bitcoin Demand is Real: Major players are accumulating Bitcoin via direct purchases and ETFs, creating sustained buying pressure.
RWAs & AI are Next: Focus on the tokenization of traditional assets and the infrastructure enabling AI agents to transact autonomously on-chain.
Bet on Platforms for AI: Consider exposure to high-throughput Layer 1s likely to become hubs for AI-driven activity as a proxy for the AI/crypto theme's growth.
Stablecoins Go Global: Prepare for a $2T market, fueled primarily by international demand, potentially reshaping banking competition.
TradFi Bridge Built: Institutional adoption is accelerating (Schwab, BlackRock), creating a stark disconnect between strong fundamentals and current market sentiment—ripe for alpha hunters.
Ethereum Adapts: ETH's deep liquidity anchors DeFi, but stablecoins and new L1s (like Thru) challenge its dominance, pushing ongoing evolution (Restaking, potential VM changes).