10 Hours of Listening.
5 Minutes of Reading.

Deep dives into the conversations shaping the future of AI, Robotics & Crypto.

Save hours of your time each week with our podcast aggregator

🔍 Search & Filter
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

AI Podcasts

December 26, 2025

⚡️GPT5-Codex-Max: Training Agents with Personality, Tools & Trust — Brian Fioca + Bill Chen, OpenAI

Latent Space

AI
Key Takeaways:
  1. The transition from chatbots with tools to agents that build tools marks the end of the manual integration era.
  2. Stop building custom model scaffolding and start building on top of opinionated agent layers like the Codex SDK.
  3. In 12 months, the distinction between a coding agent and a general computer user will vanish as the terminal becomes the primary interface for all digital labor.
See full notes
December 26, 2025

Steve Yegge's Vibe Coding Manifesto: Why Claude Code Isn't It & What Comes After the IDE

Latent Space

AI
Key Takeaways:
  1. Software is moving from a scarce resource produced by humans to a commodity generated by agentic swarms.
  2. Move beyond simple chat interfaces and start experimenting with agentic loops plus MCP servers to automate entire workflows.
  3. The AI Engineer is the new F1 driver of tech. Mastery of the tool belt matters more than the ability to build the car from scratch.
See full notes
December 24, 2025

METR's Benchmarks vs Economics: The AI capability measurement gap – Joel Becker, METR

AI Engineer

AI
Key Takeaways:
  1. The Capability-Utility Gap is widening. We see a divergence where models get smarter but the friction of human-AI collaboration keeps productivity flat.
  2. Deploy AI for mid-level engineers or low-context tasks. Avoid forcing AI workflows on your top seniors working in complex legacy systems.
  3. The next year will focus on reliability over raw intelligence. The winners will have models that require the least amount of human babysitting.
See full notes
December 24, 2025

PhD Bodybuilder Predicts The Future of AI (97% Certain) [Dr. Mike Israetel]

Machine Learning Street Talk

AI
Key Takeaways:
  1. The Macro Shift: Scaling laws are hitting a diminishing return on raw data but a massive acceleration in reasoning. The shift from statistical matching to reasoning agents happens when models can recursively check their own logic.
  2. The Tactical Edge: Build for the agentic future by prioritizing high-context data pipelines. Models perform better when you provide massive context rather than relying on zero-shot inference.
  3. The Bottom Line: We are 24 months away from AI that makes unassisted human thought look like navigating London without a map. Prepare for a world where the most valuable skill is directing machine agency rather than performing manual logic.
See full notes
December 23, 2025

Continual System Prompt Learning for Code Agents – Aparna Dhinakaran, Arize

AI Engineer

AI
Key Takeaways:
  1. The transition from model-centric to loop-centric development. Performance is now a function of the feedback cycle rather than just the weights of the frontier model.
  2. Implement an LLM-as-a-judge step that outputs a "Reason for Failure" field. Feed this string directly into a meta-prompt to update your agent's system instructions automatically.
  3. Static prompts are technical debt. Teams that build automated systems to iterate on their agent's instructions will outpace those waiting for the next model training run.
See full notes
December 23, 2025

Developer Experience in the Age of AI Coding Agents – Max Kanat-Alexander, Capital One

AI Engineer

AI
Key Takeaways:
  1. The Macro Shift: The transition from writing to reviewing as the primary engineering activity. As agents generate more code, the human role moves from creator to editor.
  2. The Tactical Edge: Build CLIs for every internal tool to give agents a native text interface. This increases accuracy and speed compared to visual automation.
  3. The Bottom Line: Developer experience is the infrastructure for AI. Investing in clean code and fast feedback loops is the only way to ensure AI productivity gains do not decay over the next 12 months.
See full notes
December 23, 2025

Small Bets, Big Impact Building GenBI at a Fortune 100 – Asaf Bord, Northwestern Mutual

AI Engineer

AI
Key Takeaways:
  1. The Macro Shift: The transition from "Human-in-the-loop" to "Agent-as-the-interface" for enterprise data.
  2. The Tactical Edge: Audit your metadata quality now because LLM accuracy is a direct function of your documentation.
  3. The Bottom Line: Success in enterprise AI is not about the biggest model but about the smallest, most frequent wins that build institutional trust.
See full notes
December 24, 2025

METR's Benchmarks vs Economics: The AI capability measurement gap – Joel Becker, METR

AI Engineer

AI
Key Takeaways:
  1. The Capability-Productivity Gap. We are entering a period where model intelligence outpaces our ability to integrate it into high stakes production.
  2. Audit your stack. Identify tasks where "good enough" generation is a win versus high context tasks where AI is currently a net negative.
  3. Do not mistake a climbing benchmark for a finished product. For the next year, the biggest wins are not in smarter models but in better verification loops.
See full notes
December 24, 2025

PhD Bodybuilder Predicts The Future of AI (97% Certain) [Dr. Mike Israetel]

Machine Learning Street Talk

AI
Key Takeaways:
  1. The transition from simple Large Language Models to Reasoning Models marks the end of the stochastic parrot era.
  2. Build agentic workflows that utilize high-context windows for recursive problem solving.
  3. We are moving toward a world where intelligence is a commodity. Your value will shift from knowing things to directing outcomes over the next 12 months.
See full notes

Crypto Podcasts

February 6, 2026

Why Is Crypto Crashing? | Weekly Roundup

Empire

Crypto
Key Takeaways:
  1. Global liquidity expands, but new investment narratives (AI, commodities, tokens) grow faster. This "dilution of attention" pulls capital from speculative crypto, favoring utility or established brands.
  2. Focus on Bitcoin and revenue-generating crypto, or explore spread trades (long Bitcoin, short altcoins). Institutional interest builds in regulated products and yield strategies for Bitcoin.
  3. The market re-rates crypto assets on tangible value, not speculative hype. Expect pressure on altcoins without clear revenue, while Bitcoin and utility-driven projects attract smart money.
See full notes
February 6, 2026

Forecasting Crypto Market Regimes

0xResearch

Crypto
Key Takeaways:
  1. DeFi is building sophisticated interest rate derivatives that provide predictive signals for broader crypto asset prices. This signals a maturation of onchain financial markets, moving closer to TradFi's analytical depth.
  2. Monitor the USDe term spread on Pendle, especially at its extremes (steep backwardation or contango), to anticipate shifts in Bitcoin's 90-day return skew and underlying yield regimes.
  3. Understanding Pendle's USDe term structure provides a powerful, data-driven lens to forecast crypto market sentiment and interest rate movements, offering a strategic advantage for investors navigating the next 6-12 months as onchain finance grows more complex.
See full notes
February 6, 2026

Bittensor Novelty Search :: SN64 Chutes :: Serverless AI compute 🪂

The Opentensor Foundation | Bittensor TAO

Crypto
Key Takeaways:
  1. The Macro Shift: AI compute is commodifying, shifting from centralized, overcapitalized data centers to globally distributed, incentive-aligned networks. This decentralization drives down costs, increases resilience, and enables unprecedented privacy.
  2. The Tactical Edge: Builders should explore Chutes' TE-enabled agent hosting and "Sign in with Chutes" OAuth system for private, cost-effective AI applications. Investors should recognize the long-term value of protocols aligning incentives for distributed compute.
  3. The Bottom Line: Chutes is building the foundational, trustless intelligence layer for the decentralized web. Its focus on privacy, efficiency, and community-driven agent development positions it as a critical piece of the Bittensor ecosystem and a potential disruptor to traditional AI giants.
See full notes
February 6, 2026

Why Everything Broke at Once (Crypto, Tech, Gold) & What Happens Next...

Bankless

Crypto
Key Takeaways:
  1. The Macro Shift: Global markets are resetting crowded growth trades, with AI's disruptive force and shifting monetary policy impacting everything from tech stocks to crypto. This period is exposing underlying correlations and forcing a re-evaluation of long-held strategies.
  2. The Tactical Edge: Maintain psychological discipline and consider dollar-cost averaging into assets with strong fundamentals. Pay close attention to Ethereum's evolving technical roadmap, as specialized L2s and L1 scaling become central.
  3. The Bottom Line: This market downturn, while painful, is a crucible for conviction. For resilient investors and builders, it presents a rare opportunity to accumulate assets and build infrastructure that will define the next cycle.
See full notes
February 6, 2026

Vitalik Keeps Selling, Zhu Su maps the next cycle, Relay Raises $17M, Figure crosses $22B in HELOCs

The Rollup

Crypto
Key Takeaways:
  1. The "crypto casino" is giving way to "neo finance," where AI and traditional finance converge on blockchain rails. This means a fundamental re-evaluation of what constitutes "value" in crypto, moving from speculative tokens to real-world asset tokenization and critical infrastructure.
  2. Focus on infrastructure plays and real-world asset (RWA) tokenization platforms. Investigate projects that streamline institutional workflows or enable high-yield stablecoin products for retail, as these areas show sustainable growth independent of speculative market cycles.
  3. The next 6-12 months will see a continued bifurcation: the old speculative crypto market will consolidate, while the "neo finance" sector, powered by stablecoins, tokenized assets, and seamless cross-chain tech, will solidify its foundations. Position yourself to build or invest in solutions that bridge traditional finance with blockchain utility, rather than chasing ephemeral token pumps.
See full notes
February 6, 2026

The AI Privacy Problem No One's Talking About in AI with George Zeng

The Rollup

Crypto
Key Takeaways:
  1. The rise of powerful AI agents (like OpenClaw) creates an urgent need for secure, private compute. This isn't just about data protection; it's about enabling a truly decentralized, user-owned AI future, mirroring the internet's evolution from walled gardens to an open web. Centralized LLMs, even without ads, still collect and use sensitive user data, making confidential compute (TEEs) and local-first models essential for trust and control.
  2. Implement AI agents within confidential virtual machines (TEEs) and establish separate, quarantined accounts for them. This protects your core digital identity and assets from potential leaks or prompt injection attacks, allowing you to experiment with agent capabilities without exposing critical data. Consider open-source models for 90% cost savings and improved privacy.
  3. The next 6-12 months will see AI agents move from novelty to necessity. Builders and investors must prioritize privacy-preserving infrastructure and user-owned AI paradigms to capture this value securely. Ignoring these foundational security layers risks catastrophic data breaches and undermines the trust required for widespread agent adoption, making decentralized, confidential solutions a competitive differentiator.
See full notes