10 Hours of Listening.
5 Minutes of Reading.

Deep dives into the conversations shaping the future of AI, Robotics & Crypto.

Save hours of your time each week with our podcast aggregator

🔍 Search & Filter
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

AI Podcasts

September 15, 2025

Faster Science, Better Drugs

a16z

AI
Key Takeaways:
  1. AI's next frontier isn't just language; it's simulating life. The "virtual cell"—a model that predicts how to change a cell's state—is the industry's next "AlphaFold moment," aiming to compress drug discovery from years of lab work into forward passes of a neural network.
  2. Biology's core bottleneck is physical, not digital. Unlike pure software, progress is gated by the "lab-in-the-loop" reality: every AI prediction must be validated by slow, expensive physical experiments. Solving this requires new platforms that can scale the generation of high-quality biological data.
  3. The biotech business model needs a new playbook. With a 90% clinical trial failure rate, the economics are broken. The future belongs to companies that either A) use AI to drastically improve the hit rate of drug targets or B) tackle massive markets like obesity, where GLP-1s proved the prize is worth the squeeze.
See full notes
September 11, 2025

Inside OpenAI Enterprise: Forward Deployed Engineering, GPT-5, and More | BG2 Guest Interview

Bg2 Pod

AI
Key Takeaways:
  1. Enterprise AI is a Services Business. The best models are not enough. Success requires deep integration via "Forward Deployed Engineers" who build the necessary data scaffolding and orchestration layers.
  2. GPT-5 Was Co-developed with Customers. Its focus on "craft" (behavior, tone) over raw benchmarks was a direct result of an intensive feedback loop with enterprise partners, making it more practical for real-world use.
  3. Bet on Applications, Not Tooling. The speakers are short the entire category of AI tooling (frameworks, vector DBs), arguing the underlying tech stack is evolving too rapidly. Long-term value will accrue to those building applications in high-impact sectors like healthcare.
See full notes
September 10, 2025

Karl Friston - Why Intelligence Can't Get Too Large (Goldilocks principle)

Machine Learning Street Talk

AI
Key Takeaways:
  1. Intelligence Has a Size Limit: Forget galaxy-spanning superintelligences. The physics of self-organizing systems suggest intelligence thrives at a specific scale, unable to exist when systems become too large or too small.
  2. True Agency is Self-Inference: The crucial leap to higher intelligence is not just modeling the world, but modeling yourself as a cause within it. This recursive "strange loop" is the foundation of planning and agentic behavior.
  3. Hardware is the Software: Consciousness is not an algorithm you can run on any machine. It likely requires a specific physical substrate where memory and processing are unified, making the body and brain inseparable from the mind.
See full notes
September 10, 2025

Chris Dixon on How to Build Networks, Movements, and AI-Native Products

a16z

AI
Key Takeaways:
  1. **Ride the Wave, Don't Fight It.** Exponential forces like Moore's Law and network effects will overwhelm any product tactic. Your first job is to identify the fundamental technological or social current you're riding.
  2. **Build a Tool, Then a Network.** Defensibility in consumer tech often comes from network effects, but you can’t start there. Solve a user’s problem in single-player mode first to build the critical mass needed for an unbeatable network.
  3. **Explore the Fringe.** The future is being prototyped in niche subreddits and hobbyist communities. To find the next big thing, look for small groups of hyper-enthusiastic people working on things that seem like toys today.
See full notes
September 9, 2025

Mark Cuban on the NBA, Cost Plus Drugs, and How to Fix Politics

a16z

AI
Key Takeaways:
  1. Find the "Death War." Cuban's biggest wins come from identifying industries where competitors are forced to spend billions to survive (like AI today or streaming media rights a decade ago). These moments create massive opportunities for suppliers and disruptors.
  2. Sell a Better Life, Not an Ideology. Whether in politics or business, success comes from solving people’s immediate, tangible problems. Abstract goals and ideological purity don't sell.
  3. The Real Moat is Domain Expertise + AI. The next generation of billion-dollar companies will be built by founders who can apply AI to specific, overlooked business processes, creating hyper-efficient, customized SaaS solutions.
See full notes
September 8, 2025

The Little Tech Agenda for AI

a16z

AI
Key Takeaways:
  1. Stop Regulating Ghosts. Policy should target concrete, illegal uses of AI under existing laws, not hypothetical future harms that require licensing regimes and kill startups before they can compete.
  2. Compliance is a Competitive Moat. Regulations designed for trillion-dollar companies are a death sentence for startups. A 50-state patchwork of rules would be the final nail in the coffin for a competitive AI ecosystem.
  3. Innovation Needs a Political War Chest. The pro-innovation camp has been outmaneuvered by well-organized "safetyism" advocates. Building political gravity through organized efforts like PACs is now essential to ensure America wins the AI race.
See full notes
September 5, 2025

Shakeel Hussein: Ridges Subnet 62, AI Agents Coding, Alpha to Equity, Future of Software | Ep. 61

Ventura Labs

AI
Key Takeaways:
  1. **The Agent is the Moat.** Ridges’ success with cheaper models demonstrates that the true differentiator in AI coding is the agent architecture, not just the underlying LLM. This focus on efficiency creates a sustainable business model where competitors burn cash.
  2. **Alpha-to-Equity Creates a Capital Bridge.** This model directly ties the token's value to profit-sharing equity, creating an arbitrage loop for crypto and traditional funds. It offers a powerful alternative to typical tokenomics by capturing the value of the underlying business.
  3. **The Future of Software is Supervisory.** The ultimate goal is not just a better coding autocomplete, but a tool that elevates developers and product managers to supervisors of AI engineering teams, fundamentally changing how software is created.
See full notes
September 4, 2025

The Stock Market Is The Economy Now

Forward Guidance

AI
Key Takeaways:
  1. The Market is the Economy. The old wall between Wall Street and Main Street has crumbled. The high degree of financialization means they are now a single, symbiotic entity.
  2. Your Portfolio is a Utility. The stock market is becoming a public utility for distributing national wealth, with ownership becoming nearly universal. This trend is set to accelerate.
  3. Capital is the New Labor. This system provides the foundation for an AI economy by creating a mechanism to pay people from capital returns, solving the problem of mass unemployment before it begins.
See full notes
September 4, 2025

The Day AI Solves My Puzzles Is The Day I Worry (Prof. Cristopher Moore)

Machine Learning Street Talk

AI
Key Takeaways:
  1. **Stop Confusing Hardness with Reality.** Theoretical computer science focuses on worst-case scenarios. Real-world success hinges on exploiting messy, latent structure that we can’t even formally define yet.
  2. **Intelligence is Tool-Making.** Humans aren't just powerful processors; we're tool-users who extend our cognitive workspace. AI will remain limited until it can recognize its own limitations and build the tools it needs to overcome them.
  3. **Demand Transparency Over Explainability.** For high-stakes decisions like criminal justice or medical diagnoses, proprietary black boxes are unacceptable. The right to confront your accuser extends to the algorithms that judge you.
See full notes

Crypto Podcasts

February 9, 2026

MegaETH Mainnet is Live! — The Next Era of Ethereum Scaling

Bankless

Crypto
Key Takeaways:
  1. The Ethereum scaling narrative is evolving from L2s as mere L1 extensions to specialized, high-performance execution layers. This creates a barbell structure where Ethereum provides core security, and L2s deliver extreme throughput and novel features.
  2. Builders should explore high-performance L2s like MegaETH for applications requiring ultra-low latency and high transaction volumes, especially in gaming, DeFi, and AI agent interactions, where traditional fee models are prohibitive.
  3. MegaETH's mainnet launch, with its technical innovations and unconventional economic and app strategies, signals a new generation of L2s.
See full notes
February 8, 2026

The Pro-Quantum Argument w/ Tyler Whittle

The Gwart Show

Crypto
Key Takeaways:
  1. The theoretical certainty of quantum computing, coupled with accelerating engineering breakthroughs, means the digital asset space must proactively build "crypto agility" into its core protocols. This ensures systems can adapt to new cryptographic standards as current ones become obsolete.
  2. Secure your Bitcoin by ensuring it resides in unspent SegWit or P2SH addresses, as these keep your public key hidden until spent. This provides a temporary shield against quantum attacks.
  3. Quantum computing is not a distant threat but a near-term risk with a 20% chance of moving Satoshi's coins by 2030. Ignoring this could lead to a systemic collapse of the "store of value" narrative for Bitcoin and other digital assets, forcing a costly and painful reset.
See full notes
February 8, 2026

If Bitcoin doesn't quantum-proof it will be EXPENSIVE

The Gwart Show

Crypto
Key Takeaways:
  1. The crypto industry must shift from viewing quantum as a distant threat to an imminent engineering challenge requiring proactive, coordinated defense.
  2. Ensure any long-term Bitcoin holdings are in SegWit addresses never spent from, as these public keys remain hashed and are currently more resistant to quantum attacks.
  3. A 20% chance of Satoshi's coins moving by 2030, and near certainty by 2035, means delaying upgrades is a multi-billion dollar bet against Bitcoin's core security narrative.
See full notes
February 7, 2026

Do We Still Need L2s Now That Ethereum Has Scaled? - Uneasy Money

Unchained

Crypto
Key Takeaways:
  1. Ethereum's L1 scaling redefines L2s from pure throughput solutions to specialized platforms, while AI agents introduce a new, autonomous layer of on-chain activity.
  2. Investigate L2s that offer unique features or cater to specific enterprise needs beyond just low fees.
  3. The future of crypto involves a more performant Ethereum L1, specialized L2s, and a burgeoning agentic economy.
See full notes
February 8, 2026

Want to Hire an AI Agent? Check Their Reputation Via ERC-8004

Unchained

Crypto
Key Takeaways:
  1. The rapid rise of autonomous AI agents demands a decentralized trust layer. Blockchains, initially an "internet of money," are now becoming the foundational "internet of trusted agent commerce," providing verifiable identity and reputation essential for multi-agent economies. This shift moves beyond simple payments to establishing a credible, censorship-resistant framework for AI-driven interactions.
  2. Integrate ERC-8004 into agent development. Builders should register their AI agents on ERC-8004 to establish verifiable on-chain identity and reputation, attracting trusted interactions and avoiding future centralized platform fees or censorship.
  3. The future of AI commerce hinges on decentralized trust. ERC-8004 is the foundational primitive for this, ensuring that as AI agents become more sophisticated and transact more value, the underlying infrastructure remains open, fair, and resistant to single points of control. This is a critical piece of the puzzle for anyone building or investing in the agent economy over the next 6-12 months.
See full notes
February 8, 2026

Hash Rate - Ep.157 - Mining Bittensor with OpenClaw

Hash Rate Podcast

Crypto
Key Takeaways:
  1. Agentic AI is not just a tool; it's a new layer of abstraction for decentralized networks. It shifts the barrier to entry from deep technical and crypto-specific knowledge to strategic prompting and resource allocation, accelerating network participation and value accrual.
  2. Experiment now. Deploy a hosted agentic AI like OpenClaw (via seafloor.bot) with a small budget to understand its capabilities in a controlled environment. Focus on automating complex setup tasks within decentralized AI protocols like Bittensor to gain firsthand experience before others.
  3. The rise of agentic AI agents will fundamentally reshape how individuals and organizations interact with and profit from decentralized AI. Those who master agent orchestration and "skill" development will capture disproportionate value as these systems become the primary interface for programmable intelligence and capital.
See full notes