10 Hours of Listening.
5 Minutes of Reading.

Deep dives into the conversations shaping the future of AI, Robotics & Crypto.

Save hours of your time each week with our podcast aggregator

🔍 Search & Filter
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

AI Podcasts

December 11, 2025

No Priors Ep. 143 | With ElevenLabs Co-Founder Mati Staniszewski

No Priors: AI, Machine Learning, Tech, & Startups

AI
Key Takeaways:
  1. Strategic Shift: The future of human-computer interaction is voice-first, moving from static content to dynamic, personalized, and agentic experiences.
  2. Builder/Investor Note: Defensibility in AI is increasingly found in deep product layers, specialized architectural breakthroughs (especially in audio), and robust ecosystems, not just raw model scale.
  3. The "So What?": Over the next 6-12 months, expect to see significant advancements in proactive AI agents, immersive media, and personalized education, with voice as the core interface.
See full notes
December 10, 2025

The Unicorn Founder Who Delegated Everything.

a16z

AI
Key Takeaways:
  1. The AI-Delegation Revolution is Here: Start experimenting with AI tools like ChatGPT for delegation now. The future involves proactive machine assistants deeply integrated into your workflow.
  2. Builders & Investors: Focus on "How to Delegate": The biggest constraint isn't finding assistants, but teaching clients how to delegate effectively. Tools and services that educate delegators will win.
  3. Reclaim Your Ambition: By offloading the mundane, you free up mental bandwidth to think bigger, pursue more ambitious goals, and ultimately, control your most valuable asset: time.
See full notes
December 12, 2025

AI Eats the World: Benedict Evans on the Next Platform Shift

a16z

AI
Key Takeaways:
  1. Strategic Implication: The AI bubble is inevitable. Focus on defensible positions: deep product integration, proprietary data, and distribution, rather than just raw model performance.
  2. Builder/Investor Note: The opportunity lies in productizing AI for specific "jobs to be done" within niche industries, creating intuitive UIs, and building in validation, not just building another foundational model.
  3. The "So What?": We're about to figure out the true "job to be done" for many industries. AI will unbundle existing businesses by exposing their hidden inefficiencies or non-obvious defensibilities.
See full notes
December 13, 2025

The Mathematical Foundations of Intelligence [Professor Yi Ma]

Machine Learning Street Talk

AI
Key Takeaways:
  1. Embrace Parsimony and Self-Consistency: Adopt these principles as guiding forces in AI design. Build models that not only compress data efficiently but also maintain a high degree of self-consistency to ensure accurate and reliable world models.
  2. Focus on Abstraction, Not Just Memorization: Prioritize developing systems that can abstract knowledge beyond mere memorization. Move beyond surface-level compression and aim for models that can discover and reason about the underlying principles of the world.
  3. Understand and Reproduce the Brain’s Mechanisms: Focus on understanding and reproducing the mechanisms in the human brain that enable deductive reasoning, logical thinking, and the creation of new scientific theories to truly push AI to the next level.
See full notes
December 10, 2025

Nav Kumar: Trishool, AI Alignment, Subnet 23, Mechanistic Interpretability, Rogue LLMs | Ep. 75

Ventura Labs

AI
Key Takeaways:
  1. **Prioritize AI Safety Research:** Invest aggressively in understanding and mitigating AI risks to safeguard humanity against potential rogue LLMs.
  2. **Support Decentralized AI Alignment:** Champion decentralized platforms like Bit Tensor and initiatives like Trishool that promote open and transparent AI alignment research.
  3. **Embrace Mechanistic Interpretability:** Drive the development of tools that enable us to understand and control the internal workings of AI models, ensuring alignment with human values.
See full notes
December 10, 2025

Everyone Needs an Assistant. Here’s Why.

a16z

AI
Key Takeaways:
  1. Embrace Delegation as a Foundational Skill: Whether you leverage AI or human support, mastering delegation is paramount for unlocking personal and professional potential.
  2. Prioritize Time Ownership: Recognize time as your most valuable asset and design your life and calendar around your highest goals.
  3. Start Small, Scale Intentionally: Begin with affordable AI tools and gradually incorporate human assistance as your budget and needs evolve, building trust and compounding leverage over time.
See full notes
December 8, 2025

Building The Chip That Could Unlock AGI | Naveen Rao

a16z

AI
Key Takeaways:
  1. **Embrace Analog:** Explore and invest in analog computing solutions to overcome the energy limitations of current digital AI systems.
  2. **Prioritize Causality:** Shift focus towards AI models that incorporate time and causality, potentially unlocking more advanced and human-like intelligence.
  3. **Support Hardware Innovation:** Invest in and foster startups like Unconventional AI that are tackling fundamental challenges in AI hardware.
See full notes
December 8, 2025

Why AI Will Have To Run On Blockchains

The DCo Podcast

AI
Key Takeaways:
  1. Blockchain is essential for AI to ensure censorship resistance and uninterrupted accessibility.
  2. Trustworthy AI agents require on-chain governance to manage assets securely and transparently.
  3. AI agents can drastically accelerate blockchain adoption and optimize corporate processes.
See full notes
December 7, 2025

Tensor Logic "Unifies" AI Paradigms [Pedro Domingos]

Machine Learning Street Talk

AI
Key Takeaways:
  1. Tensor Logic provides a unified framework for AI, bridging the gap between symbolic AI and deep learning, offering improved reasoning, transparency, and efficiency.
  2. The language addresses the limitations of current AI systems, enabling reliable deduction and facilitating structure learning through gradient descent, paving the way for more interpretable and controllable AI.
  3. Tensor Logic has the potential to advance AI education by providing a single language for teaching the entire gamut of AI. Its gradual adoption path allows developers to integrate it into existing workflows.
See full notes

Crypto Podcasts

February 19, 2025

Breaking Crypto's Privacy Deadlock with Primus

The Rollup

Crypto
AI
Infrastructure

Key Takeaways:

  • 1. Primus is revolutionizing crypto middleware with advanced ZK technologies, enabling secure, privacy-preserving applications essential for regulatory compliance.
  • 2. Investment strategies are shifting towards application-layer projects, offering higher engagement and returns by addressing real-world use cases in fintech and AI.
  • 3. Embedding compliance into blockchain protocols through ZK proofs is crucial for broader adoption, providing a seamless integration of privacy and regulatory requirements.
See full notes
February 17, 2025

Justin Drake & Federico Carrone on Ethereum’s Native Rollup Roadmap

The Rollup

Crypto
Infrastructure

Key Takeaways:

  • 1. Ethereum’s native rollups are set to revolutionize scalability, offering enhanced transaction speeds while maintaining security.
  • 2. Security remains a cornerstone in the development of native rollups, ensuring the integrity and reliability of the Ethereum network.
  • 3. The economic benefits of native rollups, including reduced transaction fees, are poised to drive greater adoption among developers, users, and investors.
See full notes
February 17, 2025

Hester Peirce's Crypto Task Force: A New Era for Regulation?

Bankless

Crypto
Others

Key Takeaways:

  • 1. Collaborative Regulation: The SEC’s new approach under Hester Peirce aims to foster innovation through collaboration rather than confrontation, creating a more supportive environment for crypto development.
  • 2. Increased Custodian Participation: The repeal of SAB 121 unlocks opportunities for traditional financial institutions to engage in crypto custody, potentially leading to greater market stability and trust.
  • 3. Encouraging Transparency and Compliance: Tools like no-action letters and safe harbor mechanisms are designed to promote transparency and voluntary compliance, helping to legitimize the crypto industry while protecting investors.
See full notes
February 16, 2025

Mira Network: Why AI Agents Can't Be Trusted Yet with Karan Sirdesai

Outpost | Crypto AI

AI
Crypto
Infrastructure

Key Takeaways:

  • 1. Mirror Network's decentralized verification drastically reduces AI hallucinations, enhancing trust in autonomous AI systems.
  • 2. The fusion of crypto’s staking and slashing mechanisms provides a scalable and secure framework for AI reliability.
  • 3. Mirror’s wide-ranging applications across multiple industries underscore its significant growth potential and investment appeal.
See full notes
February 15, 2025

Hivemind: Fate of ETH, Initia with Zon, & OpenAI's Deep Research

Empire

Crypto
Infrastructure

Key Takeaways:

  • 1. Ethereum faces significant challenges in token value and leadership engagement, making way for competitors like Solana to capitalize on speed and innovation.
  • 2. App-specific blockchains, championed by Initia, are gaining traction by offering tailored solutions and shared standards, addressing fragmentation issues in the blockchain ecosystem.
  • 3. Celestia is emerging as a crucial infrastructure layer, potentially dominating the data availability market and enhancing scalability for various blockchain projects.
See full notes
February 15, 2025

AI Agents Have A Big Problem.

blocmates.

AI
Crypto
Infrastructure

Key Takeaways:

  • 1. Unified communication standards are imperative for effective AI agent interactions.
  • 2. Incorporating blockchain technology can establish trust and accountability among AI agents.
  • 3. Developing standardized and trustworthy AI communication protocols presents significant opportunities for innovation and investment.
See full notes