10 Hours of Listening.
5 Minutes of Reading.

Deep dives into the conversations shaping the future of AI, Robotics & Crypto.

Save hours of your time each week with our podcast aggregator

🔍 Search & Filter
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

AI Podcasts

February 11, 2026

The Autonomous Driving Race Is Already Over w/ Kyle Reidhead

Milk Road AI

AI
Key Takeaways:
  1. Tesla's core identity shifted from EV maker to autonomous AI and robotics. Its cars are devices for deploying its advanced AI brain; competitors miss this.
  2. Tesla's 8 million cars collect real-world driving data. This massive dataset, combined with in-house AI processing, creates an unparalleled moat impossible for competitors to replicate.
  3. This convergence creates an abundance of labor and transportation, driving down costs. Robo-taxis and humanoid robots automate tasks, making goods and services cheaper, even as Tesla's profitability soars.
See full notes
February 11, 2026

Ep#62: PolaRiS: Scalable Real-to-Sim Evaluations for Generalist Robot Policies

RoboPapers

AI
Key Takeaways:
  1. Robotics is moving towards generalist policies that need broad, diverse evaluation. PolaRiS enables this by making it easy to create and share new, correlated benchmarks, cultivating a community-driven evaluation ecosystem similar to LLMs.
  2. Adopt PolaRiS for rapid policy iteration on pick-and-place and articulated object tasks. Use its browser-based scene builder and existing assets to quickly create new evaluation environments, then fine-tune policies with a small amount of unrelated sim data to boost real-to-sim correlation.
  3. Investing in tools like PolaRiS now means faster development cycles and more reliable policy improvements. This accelerates the path to robust, real-world robot deployment by providing a scalable, trustworthy intermediate testing ground.
See full notes
February 11, 2026

Ep#62: PolaRiS: Scalable Real-to-Sim Evaluations for Generalist Robot Policies

RoboPapers

AI
Key Takeaways:
  1. PolaRiS enables a shift towards LLM-style generalization benchmarks, where models are tested on unseen environments and tasks, accelerating robot capabilities.
  2. Use its browser-based scene builder and Gaussian splatting to quickly create diverse, real-world correlated evaluation environments, significantly reducing the cost and time of real robot testing.
  3. Cheap, reliable robot policy evaluation in simulation, with strong real-world correlation, means faster development cycles, more robust generalist robots, and a path to crowdsourced, diverse benchmarks that will push the entire field forward.
See full notes
February 12, 2026

Rivian’s Roadmap to AI Architecture and Autonomy with Founder and CEO RJ Scaringe

No Priors: AI, Machine Learning, Tech, & Startups

AI
Key Takeaways:
  1. AI is forcing a fundamental architectural change in automotive, moving from fragmented, rules-based systems to vertically integrated, neural network-powered platforms. This technical reality dictates market survival, favoring companies that control their entire software and hardware stack to build a continuous data flywheel.
  2. Invest in or partner with companies demonstrating deep vertical integration in AI hardware and software for mobility. Prioritize those with a clear path to mass-market data collection and rapid iteration cycles.
  3. Autonomy will be a must-have feature in cars within the next few years. Companies without a software-defined architecture and a vertically integrated AI stack will struggle to compete, creating a market share shift towards those few players who can deliver true self-driving at scale.
See full notes
February 12, 2026

Rivian’s Roadmap to AI Architecture and Autonomy with Founder and CEO RJ Scaringe

No Priors: AI, Machine Learning, Tech, & Startups

AI
Key Takeaways:
  1. The automotive industry is undergoing a fundamental re-architecture, moving from hardware-centric, rules-based systems to software-defined, AI-powered platforms. This shift favors companies with deep vertical integration and proprietary data flywheels.
  2. Invest in companies demonstrating full-stack control over their vehicle's software, hardware, and AI training data. This verticality is the moat against commoditization and the engine for rapid, continuous improvement.
  3. Autonomy will be a non-negotiable feature by 2030, making software-defined vehicles the only viable path for mass-market automakers. Companies that fail to build or acquire this capability will face market irrelevance.
See full notes
February 11, 2026

The Autonomous Driving Race Is Already Over w/ Kyle Reidhead

Milk Road AI

AI
Key Takeaways:
  1. Tesla's core business is AI and autonomous robotics. This means its value comes from its software and data moat, not just vehicle sales.
  2. Tesla is sunsetting Model S and X production to convert factories for humanoid robots. This signals a full commitment to autonomous devices beyond cars.
  3. Unsupervised FSD is expected in select US states by Q2. This will enable cars to operate without human oversight, unlocking the robo-taxi network.
See full notes
February 12, 2026

Rivian’s Roadmap to AI Architecture and Autonomy with Founder and CEO RJ Scaringe

No Priors: AI, Machine Learning, Tech, & Startups

AI
Key Takeaways:
  1. The automotive industry is undergoing a fundamental architectural shift from fragmented, rules-based systems to vertically integrated, AI-driven neural networks.
  2. Invest in companies demonstrating deep vertical integration in AI compute and data acquisition for autonomy, or those actively licensing next-gen software-defined vehicle architectures.
  3. The next 6-12 months will see accelerated divergence between auto players.
See full notes
February 12, 2026

Rivian’s Roadmap to AI Architecture and Autonomy with Founder and CEO RJ Scaringe

No Priors: AI, Machine Learning, Tech, & Startups

AI
Key Takeaways:
  1. The automotive industry is undergoing a core architectural change, moving from fragmented, rules-based systems to vertically integrated, AI-native software-defined vehicles. This transition will consolidate market power around a few players who control their entire stack, from silicon to data.
  2. Invest in companies demonstrating deep vertical integration in AI hardware and software, particularly those with proprietary data collection and training pipelines. These are the players building defensible moats in the future of mobility.
  3. By 2030, self-driving capabilities will be a non-negotiable feature in every car. Companies that haven't fully embraced AI-native architectures and vertical integration will struggle to compete, making this a crucial moment for market share and survival in the auto industry.
See full notes
February 12, 2026

Rivian’s Roadmap to AI Architecture and Autonomy with Founder and CEO RJ Scaringe

No Priors: AI, Machine Learning, Tech, & Startups

AI
Key Takeaways:
  1. The automotive industry is moving from fragmented, rules-based "domain architectures" to vertically integrated, AI-native "zonal architectures." This technical reality dictates market survival, as only companies controlling the full data flywheel—from raw sensor input to in-house inference chips—can deliver the continuous, high-level autonomy consumers will demand, thereby reshaping market share and consumer choice in the EV space.
  2. Invest in companies demonstrating full-stack control over their autonomy pipeline, from proprietary sensor data acquisition (cameras, radar, LiDAR) and in-house compute (custom inference chips) to a large "car park" for real-world data collection. This vertical integration is the only path to scalable, cost-effective, and continuously improving AI-driven autonomy.
  3. The future of automotive market share belongs to a select few vertically integrated players who can deliver true AI-driven autonomy and a diverse range of compelling EV choices. Companies without this core capability will face existential threats, making strategic partnerships or internal overhauls critical for survival in the near future.
See full notes

Crypto Podcasts

June 25, 2025

Solana's Inflation Is Too High

Lightspeed

Crypto
Key Takeaways:
  1. **Cut the Waste:** Solana is likely overpaying for security through high inflation, with a significant chunk going to taxes instead of productive use.
  2. **Smarter Inflation:** A market-based mechanism could optimize inflation, acting as a stabilizing "shock absorber" for staking returns, not an amplifier of volatility.
  3. **Governance is Key:** Future inflation proposals will require clearer communication and better governance tools to empower individual SOL stakers.
See full notes
June 23, 2025

Building a Global, Multi-Strat Crypto Fund with Hypersphere Ventures | Jack Platts + Mehdi Farooq

Proof of Coverage Media

Crypto
Key Takeaways:
  1. Treasury Vehicles are Hot: Levered, lower-risk exposure to core assets via public vehicles is a dominant, evolving theme; look for strong structures and viable operating businesses beyond just holding.
  2. ICOs Demand True Believers: Resurgent ICOs can build powerful early communities, but success hinges on genuine founder buy-in and fostering deep, not just wide, participation.
  3. DePIN's Litmus Test is Demand: The DePIN narrative is shifting from building supply to proving demand; projects with clear go-to-market strategies and tangible revenue (like GeoNet's $4M) will lead.
See full notes
June 23, 2025

What Happened To Joyful June?

1000x Podcast

Crypto
Key Takeaways:
  1. **Oil is Your Geopolitical Crystal Ball**: Monitor oil prices (Brent) as a leading indicator for crypto's reaction to global instability.
  2. **Brace for Bitcoin Chop, Altcoin Drop**: Expect Bitcoin to range-trade, creating headwinds for altcoins; consider defensive or short strategies for alts.
  3. **Crypto-Equities: Tread Carefully**: The boom in crypto-linked stocks and "treasury companies" signals froth. While flipping Day 1 listings might offer short-term gains, the underlying structures are high-risk. A long Coinbase (COIN) / short Circle (CRCL) pair trade is floated as a more fundamentally grounded approach.
See full notes
June 23, 2025

The Token Transparency Framework, Worldcoin, and X’s Super App | Livestream

0xResearch

Crypto
Key Takeaways:
  1. Transparency is Non-Negotiable: The industry overwhelmingly supports standardized disclosures; projects can no longer hide in ambiguity.
  2. Apps Over Chains (Mostly): The new meta for exchanges involves building user-facing applications on existing, efficient blockchains rather than launching bespoke L1s/L2s, prioritizing speed-to-market and revenue.
  3. Proof-of-Humanity is Coming: As AI blurs online reality, solutions like Worldcoin, despite debate, are gaining traction with platforms desperate to verify real users.
See full notes
June 23, 2025

Is Tether The World's Most Valuable Company?

Bankless

Crypto
Key Takeaways:
  1. Profit Powerhouse: Tether's profitability ($13.7B+ annually) fuels its independence and aggressive investment strategy, making it a financial force comparable to nations in Treasury markets.
  2. Global First, US Second (Strategically): While pursuing US compliance for USDT, Tether’s core focus remains on emerging markets where its impact (and profitability) is higher. A new US-specific stablecoin will target different, value-added use cases.
  3. Beyond Stablecoins: Tether is diversifying heavily, aiming to become a top Bitcoin miner, expanding its tokenized gold offering (with physical redemption), and investing in AI and other tech, always with an eye on distribution.
See full notes
June 23, 2025

How To Fix Crypto's Token Problem

Lightspeed

Crypto
Key Takeaways:
  1. **Brace for "Junk":** Expect a deluge of low-quality tokens funded over the past two years to hit markets in the next 12-18 months. Extreme diligence is crucial.
  2. **Equity Rises:** The growth of crypto M&A, potential IPOs, and institutional interest will increasingly value revenue-generating companies and "real things" over purely speculative tokens.
  3. **Utility Is King (Eventually):** Projects delivering genuine products, strong user adoption, and productive tokenomics will ultimately define a more robust and trustworthy crypto ecosystem.
See full notes