10 Hours of Listening.
5 Minutes of Reading.

Deep dives into the conversations shaping the future of AI, Robotics & Crypto.

Save hours of your time each week with our podcast aggregator

🔍 Search & Filter
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

AI Podcasts

February 12, 2026

🔬Generating Molecules, Not Just Models

Latent Space

AI
Key Takeaways:
  1. AI is transforming biology from a discovery science into a design discipline, enabling the creation of new molecules rather than just the prediction of existing ones. This shift is driven by specialized generative models and robust validation pipelines.
  2. Invest in platforms that abstract away the computational complexity of AI-driven molecular design, offering scalable infrastructure and user-friendly interfaces. Prioritize tools with extensive, multi-target experimental validation.
  3. The next wave of therapeutic breakthroughs will come from AI-powered generative design, not just predictive models. Companies that democratize access to these tools, coupled with rigorous real-world testing, will capture significant value in the coming years.
See full notes
February 12, 2026

Owning the AI Pareto Frontier — Jeff Dean

Latent Space

AI
Key Takeaways:
  1. Invest in or build systems that prioritize low-latency, multi-turn interactions with AI, leveraging smaller, distilled models for rapid feedback loops. This iterative approach, akin to human-to-human communication, will outcompete monolithic, single-prompt designs.
  2. The future of AI is a tightly coupled dance between hardware and software, where energy efficiency and multimodal understanding are as critical as raw parameter count. This demands a holistic approach to system design, moving beyond isolated model improvements.
  3. The next 6-12 months will see a continued acceleration in AI capabilities, driven by specialized hardware and sophisticated distillation techniques. Focus on multimodal data integration and the development of highly personalized, context-aware AI agents that can act as "installable knowledge" modules, rather than attempting to cram all knowledge into a single model.
See full notes
February 12, 2026

🔬Generating Molecules, Not Just Models

Latent Space

AI
Key Takeaways:
  1. Biology is shifting from descriptive science to generative engineering, powered by AI. This means actively designing new biological systems, altering drug discovery.
  2. Invest in platforms abstracting generative AI complexity for biology. Prioritize tools offering robust, multi-modal experimental validation and scalable infrastructure to accelerate therapeutic development.
  3. The future of drug discovery demands accessible, validated generative AI. It empowers scientists to design novel therapeutics at speed and scale, creating massive value for those leveraging these molecular design platforms.
See full notes
February 12, 2026

Owning the AI Pareto Frontier — Jeff Dean

Latent Space

AI
Key Takeaways:
  1. The era of specialized AI models is giving way to unified, multimodal architectures that generalize across tasks, driven by a full-stack approach to hardware and software.
  2. Prioritize low-latency, multi-turn interactions with AI agents, leveraging "flash" models for rapid iteration and human-in-the-loop refinement over single, complex prompts.
  3. The future of AI is personalized, low-latency, and deeply integrated into our digital lives, demanding continuous innovation in both model capabilities and the underlying infrastructure to support trillions of tokens of context.
See full notes
February 12, 2026

🔬Generating Molecules, Not Just Models

Latent Space

AI
Key Takeaways:
  1. The biological AI frontier is moving from predicting existing structures to generating novel ones. This transition, exemplified by BoltzGen, means AI is no longer just an analytical tool but a creative engine for molecular discovery, pushing the boundaries of what's possible in drug design.
  2. Invest in or build platforms that abstract away the computational and validation complexities of generative AI for biology. Boltz Lab's focus on high-throughput, experimentally validated design agents and optimized infrastructure offers a blueprint for how to turn cutting-edge models into accessible, impactful tools for scientists, accelerating therapeutic pipelines.
  3. The next 6-12 months will see a critical divergence: those who can effectively wield generative AI for molecular design will gain a significant lead in drug discovery. Companies like Boltz, by providing open-source models and productized infrastructure, are setting the standard for how to translate raw AI power into tangible, validated biological breakthroughs, making it cheaper and faster to find new medicines.
See full notes
February 12, 2026

Owning the AI Pareto Frontier — Jeff Dean

Latent Space

AI
Key Takeaways:
  1. The AI industry is consolidating around general, multimodal models, driven by a relentless pursuit of both frontier capabilities and extreme efficiency. This means the future is less about niche AI and more about broadly capable, adaptable systems.
  2. Invest in infrastructure and talent that understands the full AI stack, from hardware energy costs to prompt engineering. Prioritize low-latency inference for user-facing applications, even if it means iterating with smaller, faster models.
  3. The next 6-12 months will see continued breakthroughs in model capability and efficiency, making personalized, multimodal AI agents a reality. Builders should focus on crafting precise interaction patterns and leveraging modular, general models to unlock new applications.
See full notes
February 12, 2026

🔬Generating Molecules, Not Just Models

Latent Space

AI
Key Takeaways:
  1. The AI revolution in biology is moving from prediction to generation, enabling the de novo design of molecules with specific functions. This shift, driven by specialized architectures and open-source efforts, is fundamentally changing how new drugs and biological tools are discovered.
  2. Invest in platforms that productize complex AI models with robust, real-world validation. For builders, focus on user experience and infrastructure that abstracts away computational complexity, making advanced tools accessible to domain experts.
  3. The ability to reliably design novel proteins and small molecules will unlock unprecedented speed and efficiency in drug discovery over the next 6-12 months. Companies that can bridge the gap between cutting-edge AI models and practical, validated lab results will capture significant value.
See full notes
February 12, 2026

🔬Generating Molecules, Not Just Models

Latent Space

AI
Key Takeaways:
  1. AI in biology is rapidly transitioning from predictive analytics to generative design, demanding specialized models that integrate complex biophysical priors and robust, real-world experimental validation to move from theoretical predictions to tangible, novel molecules.
  2. Builders and investors should prioritize platforms that not only offer state-of-the-art generative models but also provide scalable infrastructure, intuitive interfaces, and a commitment to open-source development and rigorous experimental validation, lowering the barrier for scientific innovation.
  3. The ability to design new proteins and small molecules with AI is no longer science fiction; it's a rapidly maturing field. Companies that can effectively bridge the gap between cutting-edge AI research and practical, validated tools will capture significant value in the accelerating race for new therapeutics and biotechnologies.
See full notes
February 12, 2026

Owning the AI Pareto Frontier — Jeff Dean

Latent Space

AI
Key Takeaways:
  1. The AI industry is moving from a focus on raw model size to a sophisticated interplay of frontier research, efficient distillation, and specialized hardware. This means the "best" model isn't just the biggest, but the one optimized for its specific deployment context, driven by energy efficiency and latency.
  2. Prioritize investments in hardware and software architectures that enable extreme low-latency inference and multimodal processing. For builders, this means designing systems that can leverage both powerful frontier models for complex tasks and highly optimized "flash" models for ubiquitous, real-time applications.
  3. The next 6-12 months will see a continued acceleration in AI capabilities, driven by a relentless focus on making models faster, cheaper, and more context-aware. Companies that excel at distilling cutting-edge AI into deployable, low-latency solutions will capture significant market share and redefine user expectations.
See full notes

Crypto Podcasts

July 7, 2025

Is Crypto Still The Best Trade?

1000x Podcast

Crypto
Key Takeaways:
  1. The Altcoin Graveyard Is Bitcoin's Tailwind. Capital is fleeing "useless" tokens and the defunct VC model, creating steady inflows for Bitcoin. The primary trade is now long BTC, short everything else.
  2. From HODL to Tactical Alpha. The days of 100x returns on random tokens are gone. Generating alpha now requires sophisticated strategies like pairs trading, selling options volatility against spot holdings, and capitalizing on short-term macro events.
  3. S&P is the New Dollar, Bitcoin is the New S&P. As the dollar loses its luster, the S&P 500 has become the default savings vehicle. Bitcoin has cemented its role as the premier risk-on asset within that new paradigm—a bet that “probably won’t” fail.
See full notes
July 7, 2025

Permissionless: The Next Generation of Consumer Crypto Apps

0xResearch

Crypto
Key Takeaways:
  1. Wallets are Dead, Long Live Wallets: The future isn't a separate wallet app. It's an embedded, invisible experience inside the consumer apps themselves, just like friend.tech demonstrated.
  2. From Gatekeepers to Curators: Centralized exchanges are becoming obsolete as gatekeepers. The new frontier is building sophisticated curation engines to help users discover signal in a sea of noise.
  3. AI Agents are the Next Big User Base: The most forward-thinking founders aren't just building for humans; they're building for a future where AI agents drive the majority of on-chain trading volume.
See full notes
July 5, 2025

How To Improve Solana's Market Structure | Eugene Chen

Lightspeed

Crypto
Key Takeaways:
  1. **Stop Chasing Max Decentralization.** The market has voted with its volume. Users prioritize performance over ideological purity. "Verifiable Finance"—with centralized sequencers but guaranteed withdrawals—is the pragmatic path forward.
  2. **Market Structure Is Destiny.** Inefficient L1s with toxic MEV force sophisticated teams to build workarounds (like the proprietary AMM Sulfi) or entirely new, controlled environments (like Atlas). The base layer's design dictates the quality of applications built on top.
  3. **The Real Game Is Efficient Markets, Not Memecoins.** The long-term vision for crypto finance depends on building infrastructure that can attract institutional capital with fair, reliable, and highly efficient execution. The current system that incentivizes "bad fills" is a dead end.
See full notes
July 4, 2025

0xResearch Cross-Post: Crypto Regulation, Breakout Apps, and TradFi’s Impact | Jon Charbonneau

Bell Curve

Crypto
Key Takeaways:
  1. Go-to-Market > Tech Specs: In the race between new chains, attracting a single breakout app is more critical than marginal performance gains. Value accrues to whoever owns the user relationship.
  2. Bet on Improvable Niches: The biggest startup opportunities are in high-demand but clunky sectors like prediction markets and memecoin launchpads, where superior UX can create a dominant new player.
  3. Look Forward, Not Sideways: Don't get trapped by the "revenue meta." Successful investing requires a forward-looking view of a project’s potential to capture future value, a lesson exemplified by the early thesis for Solana.
See full notes
July 4, 2025

It’s A Bull Market But Not The One You Wanted With Rob Hadick & Santiago Santos | Weekly Roundup

Empire

Crypto
Key Takeaways:
  1. **The Real Bull Case is Boring.** The most significant trend isn't the next memecoin, but the "boring" migration of real-world finance onto blockchains via stablecoins. The winners will be those who solve for on-chain credit and build seamless user experiences, not just hype.
  2. **Tokenization is a Double-Edged Sword.** While providing access to new assets, current tokenized stocks are riddled with counterparty risk, thin liquidity, and opaque structures. They are a step forward but risk backfiring if not communicated with radical transparency.
  3. **The Altcoin Shakeout is Here.** Institutional interest is hyper-focused, leaving most altcoins without a bid. Protocols must now justify their existence with real revenue and utility, as the era of "liquidity-as-a-product" is over.
See full notes
July 4, 2025

Robinhood's Announcement Sets off Stock Tokens Frenzy (Weekly Crypto News)

Bankless

Crypto
Key Takeaways:
  1. Tokenized Stocks Are Here, But Imperfect. Major players are live, but the current products are IOUs, not direct equity. The real test will be liquidity, price tracking, and regulatory endurance.
  2. Tom Lee Is Creating the "MicroStrategy for ETH." He's pitching ETH to Wall Street not on decentralist ideals, but as the indispensable settlement layer for the coming stablecoin boom, front-running demand from major banks.
  3. The US Is Pumping Crypto Bags. A massive deficit bill combined with an expected dovish Fed creates a perfect storm for liquidity, positioning assets like BTC and ETH as a necessary hedge against currency debasement.
See full notes