The macro trend of autonomous AI agents is shifting compute demand beyond GPUs, creating an unexpected CPU crunch and forcing a re-evaluation of on-premise inference and cost-optimized model routing for security and efficiency.
Investigate hybrid compute strategies, combining secure local environments (Mac Minis, home servers) with cloud-based LLMs, and explore multi-model API gateways like OpenRouter to optimize agent costs and performance.
AI agents are here, demanding a rethink of your compute stack and security protocols. Prepare for a future where CPU capacity, not just GPU, becomes a critical bottleneck, and strategic cost management for diverse AI models is non-negotiable for competitive advantage.
The move from general-purpose LLMs to specialized AI agents demands a new data architecture that captures the *why* of decisions, not just the *what*. This creates a new, defensible layer of institutional memory, moving value from raw model IP to proprietary decision intelligence.
Invest in or build agentic systems that are in the *orchestration path* of specific business processes. This allows for the organic capture of decision traces, forming a proprietary context graph that incumbents cannot easily replicate.
Over the next 12 months, the ability to build and extract value from context graphs will define the winners in the enterprise AI space, creating a new "context graph stack" that will be 10x more valuable than the modern data stack.
AI's progress has transitioned from a linear, bottleneck-driven model to a multi-layered, interconnected explosion of advancements. This makes traditional long-term forecasting obsolete.
Prioritize building and investing in adaptable systems and teams that can rapidly respond to emergent opportunities across diverse AI layers. Focus on robust interfaces and composability rather than betting on a single "next frontier."
The next 6-12 months will test our ability to operate in an environment where the future is increasingly opaque. Success will come from embracing this unpredictability, focusing on present opportunities, and building for resilience against an unknowable future.
The Macro Shift: Unprecedented fiscal and monetary stimulus, combined with an AI-driven capital investment super cycle, creates a "sweet spot" for financial assets and growth technology. This favors institutions with scale and adaptability.
The Tactical Edge: Prioritize investments in companies with proprietary data and significant GPU access, as these are new competitive moats in the AI era. For founders, secure capital to compete against well-funded incumbents.
The Bottom Line: Scale and strategic capital deployment are paramount. Whether a financial giant or tech insurgent, the ability to grow, adapt to AI's new rules, and handle regulatory currents will determine relevance and success.
The AI industry is consolidating around players with deep, proprietary data and infrastructure, transforming general LLMs into personalized, transactional agents. This means value accrues to those who can not only build powerful models but also distribute them at scale and integrate them into daily life.
Investigate companies building on top of Google's AI ecosystem or those creating niche applications that use personalized AI. Focus on solutions that move beyond simple chatbots to actual task execution and intent capture.
Google's strategic moves, particularly with Apple and in e-commerce, signal a future where AI is deeply embedded in every digital interaction. Understanding this shift is crucial for identifying where value will be created and captured.
The AI industry is pivoting from a singular AGI pursuit to a multi-pronged approach, where specialized models, advanced post-training, and geopolitical open-source competition redefine competitive advantage and talent acquisition.
Invest in infrastructure and expertise for advanced post-training techniques like RLVR and inference-time scaling, as these are the primary drivers of capability gains and cost efficiency in current LLM deployments.
The next 6-12 months will see continued rapid iteration in AI, driven by compute scale and algorithmic refinement rather than architectural overhauls. Builders and investors should focus on specialized applications, human-in-the-loop systems, and the strategic implications of open-weight models to capture value in this evolving landscape.
The open-source AI movement is democratizing access to powerful models, but this decentralization shifts the burden of safety and robust environmental adaptation from central labs to individual builders.
Prioritize investing in or building tools that provide robust, scalable evaluation and alignment frameworks for open-weight models.
The next 6-12 months will see a race to solve environmental adaptability and human alignment in open-weight agentic AI. Success here will define the practical utility and safety of the next generation of AI applications.
The US is pivoting from a QE-fueled, government-led economy to a "free market" model under the new Fed Chair, Kevin Warsh. This means a potential reduction in the Fed's balance sheet (QT) and lower rates without yield curve control (YCC), leading to decreased US dollar liquidity.
Adopt a phased, data-driven allocation strategy. Michael Nato recommends an 80% cash position, deploying first into Bitcoin (65% target) at macro lows (around 65K-58K BTC, MVRV < 1, 200WMA touch), then into high-conviction core assets (20%), long-term holds (10%), and finally "hot sauce" (5%) during wealth creation.
The current "wealth destruction" phase, while painful, presents a rare opportunity to accumulate assets at generational lows, provided one understands the macro shifts and adheres to a disciplined, multi-stage deployment plan.
The financial world is splitting into two parallel systems: opaque TradFi and transparent onchain finance. Value is migrating to platforms that can simplify and distribute onchain financial products globally.
Invest in or build applications that prioritize mobile-native experiences, abstract away crypto complexities (like gas fees), and offer tangible real-world utility for onchain assets.
The future of finance is onchain, and "super apps" like Jupiter are building the necessary infrastructure and user experiences to onboard the next billion users.
Crypto's initial broad vision has narrowed to specific financial use cases, while AI and traditional markets capture broader attention. This means builders must focus on tangible value and investors on proven models.
Identify projects with novel token distribution models (like Cap's stablecoin airdrop) or those building consumer-friendly applications within new ecosystems (like Mega ETH) that address past tokenomics failures.
The industry is past its naive, speculative phase. Success hinges on practical applications, robust tokenomics, and competing with traditional finance, not just abstract ideals.
The Macro Shift: From unbridled, community-driven idealism to a pragmatic, business-focused approach. Early crypto imagined a world where "everything is a thing on Ethereum," but reality has narrowed its primary use cases to finance and trading, forcing a re-evaluation of tokenomics and community models. This shift is also driven by AI capturing mindshare and traditional finance co-opting blockchain tech.
The Tactical Edge: Re-evaluate token distribution models. Instead of relying on inflationary yield farming that creates sell pressure, explore innovative approaches like Cap's "stable drop" (airdropping stablecoins, then inviting participation in a token sale) to align incentives and attract long-term holders. Focus on building real products with defensible business models, even if they lean more "business" than "protocol."
The shift from centralized, static data aggregation to decentralized, real-time, incentivized intelligence networks is fundamentally changing how data-intensive industries operate.
Investigate subnet opportunities where incumbent data quality is low and validation is a core challenge.
The future of sales is not just about more leads, but smarter, fresher, and more relevant ones.
The Macro Shift: As trust erodes in traditional financial systems and geopolitical risks rise, capital is flowing towards more efficient, permissionless DeFi markets. This is forcing traditional finance to adapt or lose market share.
The Tactical Edge: Evaluate DATs trading below NAV for potential M&A or activist plays, as these discounts often reflect management misalignment rather than fundamental asset weakness.
The Bottom Line: The current market volatility, Fed policy shifts, and the rise of DeFi are not just noise; they are reshaping capital allocation. Investors and builders must understand these structural changes to position for the next cycle of institutional adoption.