Experiential AI is exploding. User-driven interactive experiences are the future of entertainment and will rival traditional media consumption.
BitTensor is now a competitive platform. The integration of subnets like Targon for inference showcases real-world enterprise use cases and cost-effective solutions, providing a compelling alternative to centralized providers.
Community-Driven AI: User-generated content and interactive AI companions are creating new forms of social connection and entertainment, particularly for younger demographics.
Current AI benchmarks are limited due to rapid saturation. The presented statistical framework addresses this by stitching together multiple benchmarks to provide a more comprehensive evaluation.
The framework enables the tracking of model capabilities over time, offering insights into algorithmic improvements and forecasting potential AI advancements.
Software improvements are rapidly accelerating AI development, requiring significantly fewer computational resources each year to achieve the same level of capability.
On-Chain Execution is Crucial: True crypto AI requires AI agents that operate entirely on-chain to maintain decentralization, verifiability, and auditability.
Monetization is Key: For sustainable AI adoption, clear and viable business models are essential to drive value back to the creators and incentivize participation.
Entertainment as a Catalyst: Leveraging entertainment through agent-versus-agent competitions can drive adoption and demonstrate the earning potential of AI agents, fostering a new AI entertainment economy.
Measure Usage, Not Just Spend. The biggest failure in enterprise AI is tracking software purchases as a proxy for progress. The focus must shift to measuring actual tool usage correlated with output.
Solve for Fear, Not Features. Employee adoption hinges on psychological safety. The most powerful tools will fail if users are afraid of looking incompetent or getting fired for making a mistake.
Competition Drives Augmentation, Not Unemployment. The "AI will take our jobs" narrative is a red herring. Companies will reinvest AI-driven productivity gains to crush competitors, not just to cut headcount.
**The "One Model" Thesis Is Dead.** The future belongs to a portfolio of specialized models. This creates distinct opportunities for both foundational labs and companies that can leverage proprietary data to build best-in-class models for niche applications.
**Data Is the Ultimate Differentiator.** Reinforcement learning fine-tuning elevates proprietary data from a simple input for RAG systems to the core ingredient for building a defensible, state-of-the-art product.
**Agents Will Specialize.** The agent ecosystem is bifurcating into two primary types: open-ended, creative agents for knowledge work and deterministic, procedural agents designed for enterprise automation where reliability and adherence to standard operating procedures are critical.
Politics Will Trump Tech. Expect a policy pivot ahead of the 2024 election. The administration’s singular focus on AI stimulus is creating populist backlash, forcing a shift toward policies that support the broader labor market to secure votes.
The AI Trade Is Evolving. The "Mag 7" may soon become regulated utilities. The next wave of winners will be legacy companies that successfully integrate AI to boost margins and the overlooked players in the AI supply chain, such as power and commodity providers.
Prepare for a New Monetary Regime. The era of "QE Infinity" is ending. A post-Powell Fed is expected to move credit creation from its own balance sheet back to commercial banks, using deep rate cuts and deregulation to stimulate the economy.
AI Demand Is Not Cyclical; It's Infinite. Forget boom-and-bust. The mission to solve humanity's greatest problems—from disease to space travel—creates limitless demand for intelligence, underpinning a durable, multi-decade investment cycle.
Scrap GDP; Watch Profit Margins. The widening chasm between the astronomical profit margins of tech companies and the rest of the economy is the single most important macroeconomic signal today.
Bitcoin Is the Apex Predator of Moats. In a world where AI can replicate any business model, the only defensible moats are those built on time-tested belief and mathematical scarcity. Bitcoin is the emerging winner for the digital age.
AI's Physical Footprint is Astronomical: Individual AI data centers are now multi-billion dollar megaprojects, with construction timelines accelerating to as little as one year for a gigawatt-scale facility.
Power is a Solvable Problem, Not a Hard Cap: AI firms will pay whatever it takes to secure electricity, making power costs a secondary concern to the price of GPUs. The real constraint is getting chips, not watts.
Open-Source Intelligence Unveils All: By combining satellite imagery, public permits, and news reports, the physical expansion of the AI industry can be tracked in near real-time, providing unprecedented transparency.
AI Isn't a Bubble; It's a Buildout. The market is rational. Massive spending is backed by real revenue from inference. The true bottleneck is the speed at which capital can be deployed to build city-sized data centers.
Brace for Economic Whiplash. A sudden, AI-driven unemployment spike is the most likely trigger for massive government intervention. The political response will be swift, decisive, and potentially radical.
Superintelligence is a Hardware Problem. The path to 2045 runs through physical infrastructure. Progress is gated by the brute-force economics of building data centers, not a quest for a magical algorithm.
The commodification of AI compute, driven by decentralized networks, is shifting power from centralized data centers to globally distributed, incentive-aligned miners. This creates a more efficient, resilient, and cost-effective foundation for intelligence.
Explore building AI agents and applications on Shoots' expanding platform, leveraging their TEEs and end-to-end encryption for privacy-sensitive use cases. The "Sign in with Shoots" OAuth system offers a compelling way to integrate AI capabilities without upfront compute costs.
Shoots is not just an inference provider; it's building the foundational infrastructure for a truly decentralized, private, and intelligent internet. Over the next 6-12 months, expect to see a proliferation of sophisticated AI agents and applications built on Shoots, driven by its unique blend of incentives, security, and global compute.
The Macro Shift: Ethereum pivots from a "rollup-centric" vision to a multi-faceted approach: a powerful, ZKVM-scaled L1 coexists with a diverse "alliance" of specialized L2s. This adapts to technical realities and renews L1's core focus.
The Tactical Edge: Builders should prioritize differentiated L2 solutions or contribute to L1's ZKVM scaling. Investors should evaluate L2s based on distinct utility and symbiotic relationship with Ethereum.
The Bottom Line: Ethereum's market leadership remains, but this pivot signals a pragmatic roadmap. The next 6-12 months will see rallying around L1 ZKVM scaling and clearer L2 roles, demanding sharper focus on where value accrual and innovation occur.
Global liquidity is high, but capital is reallocating from speculative crypto to traditional stores of value and, paradoxically, to DeFi platforms offering RWA exposure. This signals a maturation where utility and transparency are gaining ground over pure hype.
Identify protocols with demonstrable revenue generation from real-world use cases, like Hyperliquid, as potential outperformers. Focus on platforms that offer transparency and accountability, as market structure shifts towards more regulated and predictable venues.
The crypto market is undergoing a structural reset, moving away from a retail-driven, speculative cycle. Investors must adapt to a landscape where fresh capital is scarce, institutional flows favor gold, and DeFi's next frontier involves real-world assets.
The convergence of AI agents and programmable money is creating a new frontier for digital commerce and liability. This shift demands a proactive re-evaluation of regulatory frameworks, moving beyond human-centric definitions of accountability and transaction.
Builders should design AI agent systems with cryptographically embedded controls, allowing for granular policy enforcement (e.g., spending limits triggering human review) and leveraging stablecoins for microtransactions in decentralized agent-to-agent economies.
The next 6-12 months will see increasing pressure to define AI agent liability and payment rails. Investors should prioritize projects building infrastructure for secure, auditable agent commerce, while builders must integrate compliance and control mechanisms from day one to navigate this evolving landscape.
The economy is shifting from human-centric labor and scarcity to AI-driven abundance, where machine intelligence itself becomes the primary unit of economic exchange, challenging traditional monetary and employment structures.
Investigate and build "proof of control" solutions using crypto primitives (like ZKPs, TEEs, decentralized compute/storage) to secure AI agents and data.
The next 6-12 months will see increased demand for verifiable control over AI systems. Understanding how crypto enables this, and how human value shifts from transactional jobs to unique human interaction, is crucial for navigating this new economic reality.
AI's productivity boom is redirecting capital from financial engineering (buybacks) in large-cap tech to physical infrastructure (data centers, hardware).
Reallocate capital from over-concentrated, buyback-dependent large-cap tech into AI infrastructure plays (hardware, energy), commodities, and potentially regional banks, while actively managing duration risk in bonds.
The market's underlying structure is cracking. Passive investment in broad tech indices will likely yield poor real returns.