10 Hours of Listening.
5 Minutes of Reading.

Deep dives into the conversations shaping the future of AI, Robotics & Crypto.

Save hours of your time each week with our podcast aggregator

🔍 Search & Filter
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

AI Podcasts

December 16, 2025

Why Physical AI Needs a new Data Set | Rerun CEO

Weights & Biases

AI
Key Takeaways:
  1. Data Infrastructure is the Next Bottleneck: The physical AI sector's growth hinges on specialized data tooling that can handle multimodal, multi-rate, episodic data, moving beyond traditional tabular models.
  2. Builders, Prioritize Robustness: Focus on building systems that handle real-world variability and simplify data pipelines. Leverage open-source tools and consider combining imitation and reinforcement learning.
  3. The "So What?": The next 6-12 months will see significant improvements in robot robustness and the ability to perform longer, more complex tasks. This progress will be driven by better data management, making the gap between lab demos and deployable products narrower.
See full notes
December 16, 2025

Build reliable AI agents using W&B Training

Weights & Biases

AI
Key Takeaways:
  1. The democratization of RL for LLMs will accelerate the deployment of more reliable and sophisticated AI agents across industries.
  2. Builders should move beyond basic prompt engineering and RAG. RL fine-tuning, now accessible via W&B Serverless RL, is a critical next step for high-stakes agentic applications.
  3. For the next 6-12 months, expect a surge in production-grade AI agents, with open-source models increasingly closing the performance gap with proprietary alternatives through advanced fine-tuning.
See full notes
December 15, 2025

Coding Evals: From Code Snippets to Codebases – Naman Jain, Cursor

AI Engineer

AI
Key Takeaways:
  1. Dynamic Evaluation is Non-Negotiable: Static benchmarks are dead. Future AI development demands continuously updated, contamination-resistant evaluation sets.
  2. AI Needs AI to Judge AI: As models grow more sophisticated, LLM-driven "hack detectors" become essential for ensuring code quality and preventing adversarial exploitation of evaluation systems.
  3. User Experience Drives Adoption: For interactive AI coding tools, prioritize low latency and human-centric design; technical prowess alone will not guarantee real-world usage.
See full notes
December 15, 2025

Building in the Gemini Era – Kat Kampf & Ammaar Reshi, Google DeepMind

AI Engineer

AI
Key Takeaways:
  1. Strategic Implication: The value in software development shifts from manual coding to high-level architectural design and prompt engineering.
  2. Builder/Investor Note: Experiment with AI Studio's agentic and design capabilities. Focus on describing desired functionality rather than low-level code.
  3. The "So What?": The next 6-12 months will see a surge in AI-powered, full-stack applications built by a broader range of creators, disrupting traditional development paradigms.
See full notes
December 16, 2025

What We Learned Deploying AI within Bloomberg’s Engineering Organization – Lei Zhang, Bloomberg

AI Engineer

AI
Key Takeaways:
  1. Strategic Shift: AI's impact extends beyond simple productivity. The real opportunity lies in fundamentally changing the cost function of engineering, making previously expensive or undesirable tasks cheap and feasible.
  2. Platform Imperative: For large organizations, a "golden path" platform is not optional. It's how you manage complexity, ensure quality, and scale AI adoption safely and efficiently.
  3. Human-Centric Adaptation: Technology is only half the battle. Investing in cultural adaptation, community building, and leadership training is crucial for realizing AI's full potential.
See full notes
December 16, 2025

Your Support Team Should Ship Code – Lisa Orr, Zapier

AI Engineer

AI
Key Takeaways:
  1. Strategic Implication: Companies integrating AI-driven code generation into non-engineering roles will see significant efficiency gains and improved product reliability.
  2. Builder/Investor Note: Focus on building AI tools that deeply embed into existing workflows. Orchestration of multiple AI tools into an agent-like system is key for adoption and value.
  3. The "So What?": The next 6-12 months will see a redefinition of "support" from reactive reporting to proactive, code-shipping problem-solving, unlocking new talent pools and accelerating development cycles.
See full notes
December 16, 2025

Finding The 1% of Stocks That Matter | Henry Ellenbogen Interview

Invest Like The Best

AI
Key Takeaways:
  1. Strategic Implication: The AI era will disproportionately reward existing businesses that deeply integrate AI to create unassailable cost structures, not just new AI-native ventures.
  2. Builder/Investor Note: Seek out resilient "Act II" leaders who embrace the "and" business—growth, innovation, and profitability—and are willing to navigate public market scrutiny for long-term alignment.
  3. The "So What?": Over the next 6-12 months, expect market volatility to create opportunities to invest in disciplined companies leveraging AI for fundamental operational shifts, rather than just hype.
See full notes
December 15, 2025

The Renaissance of the American Factory | a16z 2026 Big Ideas

a16z

AI
Key Takeaways:
  1. Strategic Implication: The next wave of industrial growth will come from applying manufacturing principles to large-scale infrastructure, not just consumer goods.
  2. Builder/Investor Note: Focus on companies that are standardizing designs and processes for physical assets, particularly those leveraging AI to navigate regulatory complexity and accelerate deployment.
  3. The "So What?": The rapid build-out of data centers is a live experiment for a broader industrial renaissance, providing a blueprint for how America can rebuild its capacity to build at scale over the next 6-12 months.
See full notes
December 16, 2025

⚡️Jailbreaking AGI: Pliny the Liberator & John V on Red Teaming, BT6, and the Future of AI Security

Latent Space

AI
Key Takeaways:
  1. Strategic Implication: The "AI safety" narrative is shifting from content moderation to systemic security. Focus on hardening the entire AI ecosystem, not just restricting model outputs.
  2. Builder/Investor Note: Be wary of "AI security" products that claim to "secure the model" through guardrails. These are likely security theater. Invest in full-stack AI security solutions, red teaming services, and platforms that facilitate open-source adversarial research.
  3. The "So What?": The future of AI security is not about building higher walls around models, but about understanding and hardening the entire ecosystem in which they operate. Open collaboration and adversarial testing are the fastest paths to robust AI.
See full notes

Crypto Podcasts

February 7, 2026

How Chutes Hit 160B Tokens/Day (Without Centralized Infrastructure)

The Opentensor Foundation | Bittensor TAO

Crypto
Key Takeaways:
  1. The commodification of AI compute, driven by decentralized networks, is shifting power from centralized data centers to globally distributed, incentive-aligned miners. This creates a more efficient, resilient, and cost-effective foundation for intelligence.
  2. Explore building AI agents and applications on Shoots' expanding platform, leveraging their TEEs and end-to-end encryption for privacy-sensitive use cases. The "Sign in with Shoots" OAuth system offers a compelling way to integrate AI capabilities without upfront compute costs.
  3. Shoots is not just an inference provider; it's building the foundational infrastructure for a truly decentralized, private, and intelligent internet. Over the next 6-12 months, expect to see a proliferation of sophisticated AI agents and applications built on Shoots, driven by its unique blend of incentives, security, and global compute.
See full notes
February 7, 2026

Vitalik Signals the End of the Rollup-Centric Roadmap: What's Next?

Bankless

Crypto
Key Takeaways:
  1. The Macro Shift: Ethereum pivots from a "rollup-centric" vision to a multi-faceted approach: a powerful, ZKVM-scaled L1 coexists with a diverse "alliance" of specialized L2s. This adapts to technical realities and renews L1's core focus.
  2. The Tactical Edge: Builders should prioritize differentiated L2 solutions or contribute to L1's ZKVM scaling. Investors should evaluate L2s based on distinct utility and symbiotic relationship with Ethereum.
  3. The Bottom Line: Ethereum's market leadership remains, but this pivot signals a pragmatic roadmap. The next 6-12 months will see rallying around L1 ZKVM scaling and clearer L2 roles, demanding sharper focus on where value accrual and innovation occur.
See full notes
February 6, 2026

'No More Dry Powder to Come Into Tokens': Why Crypto Is Down

Unchained

Crypto
Key Takeaways:
  1. Global liquidity is high, but capital is reallocating from speculative crypto to traditional stores of value and, paradoxically, to DeFi platforms offering RWA exposure. This signals a maturation where utility and transparency are gaining ground over pure hype.
  2. Identify protocols with demonstrable revenue generation from real-world use cases, like Hyperliquid, as potential outperformers. Focus on platforms that offer transparency and accountability, as market structure shifts towards more regulated and predictable venues.
  3. The crypto market is undergoing a structural reset, moving away from a retail-driven, speculative cycle. Investors must adapt to a landscape where fresh capital is scarce, institutional flows favor gold, and DeFi's next frontier involves real-world assets.
See full notes
February 6, 2026

Is Crypto Focusing on the Wrong Regulatory Fight? DEX in the City

Unchained

Crypto
Key Takeaways:
  1. The convergence of AI agents and programmable money is creating a new frontier for digital commerce and liability. This shift demands a proactive re-evaluation of regulatory frameworks, moving beyond human-centric definitions of accountability and transaction.
  2. Builders should design AI agent systems with cryptographically embedded controls, allowing for granular policy enforcement (e.g., spending limits triggering human review) and leveraging stablecoins for microtransactions in decentralized agent-to-agent economies.
  3. The next 6-12 months will see increasing pressure to define AI agent liability and payment rails. Investors should prioritize projects building infrastructure for secure, auditable agent commerce, while builders must integrate compliance and control mechanisms from day one to navigate this evolving landscape.
See full notes
February 7, 2026

What Do Jobs and Money Look Like in a Post-Human Economy?

Unchained

Crypto
Key Takeaways:
  1. The economy is shifting from human-centric labor and scarcity to AI-driven abundance, where machine intelligence itself becomes the primary unit of economic exchange, challenging traditional monetary and employment structures.
  2. Investigate and build "proof of control" solutions using crypto primitives (like ZKPs, TEEs, decentralized compute/storage) to secure AI agents and data.
  3. The next 6-12 months will see increased demand for verifiable control over AI systems. Understanding how crypto enables this, and how human value shifts from transactional jobs to unique human interaction, is crucial for navigating this new economic reality.
See full notes
February 6, 2026

Markets Are Entering A New Era Of AI-Driven Disruption | Weekly Roundup

Forward Guidance

Crypto
Key Takeaways:
  1. AI's productivity boom is redirecting capital from financial engineering (buybacks) in large-cap tech to physical infrastructure (data centers, hardware).
  2. Reallocate capital from over-concentrated, buyback-dependent large-cap tech into AI infrastructure plays (hardware, energy), commodities, and potentially regional banks, while actively managing duration risk in bonds.
  3. The market's underlying structure is cracking. Passive investment in broad tech indices will likely yield poor real returns.
See full notes