The transition from Black Box to Glass Box AI. Trust is the next moat, and interpretability is the tool to build it.
Use feature probing for high-stakes monitoring. It is more effective and cheaper than using LLMs as judges for tasks like PII scrubbing.
Understanding model internals is no longer just a safety research project. It is a production requirement for any builder deploying AI in regulated or high-stakes environments over the next 12 months.
The transition from completion to agency means benchmarks are moving from static snapshots to active environments.
Integrate unsolvable test cases into internal evaluations to measure model honesty.
Success in AI coding depends on navigating the messy, interactive reality of production codebases rather than chasing high scores on memorized puzzles.
The transition from technology push to market pull requires builders to stop focusing on the stack and start obsessing over user psychology.
Apply the Mom Test by asking users about their current workflows instead of pitching your solution. This prevents building expensive features that nobody uses.
The next decade of AI will be won by those who understand the human condition as deeply as they understand the transformer architecture.
The commodification of AI compute, driven by decentralized networks, is shifting power from centralized data centers to globally distributed, incentive-aligned miners. This creates a more efficient, resilient, and cost-effective foundation for intelligence.
Explore building AI agents and applications on Shoots' expanding platform, leveraging their TEEs and end-to-end encryption for privacy-sensitive use cases. The "Sign in with Shoots" OAuth system offers a compelling way to integrate AI capabilities without upfront compute costs.
Shoots is not just an inference provider; it's building the foundational infrastructure for a truly decentralized, private, and intelligent internet. Over the next 6-12 months, expect to see a proliferation of sophisticated AI agents and applications built on Shoots, driven by its unique blend of incentives, security, and global compute.
The Macro Shift: Ethereum pivots from a "rollup-centric" vision to a multi-faceted approach: a powerful, ZKVM-scaled L1 coexists with a diverse "alliance" of specialized L2s. This adapts to technical realities and renews L1's core focus.
The Tactical Edge: Builders should prioritize differentiated L2 solutions or contribute to L1's ZKVM scaling. Investors should evaluate L2s based on distinct utility and symbiotic relationship with Ethereum.
The Bottom Line: Ethereum's market leadership remains, but this pivot signals a pragmatic roadmap. The next 6-12 months will see rallying around L1 ZKVM scaling and clearer L2 roles, demanding sharper focus on where value accrual and innovation occur.
Global liquidity is high, but capital is reallocating from speculative crypto to traditional stores of value and, paradoxically, to DeFi platforms offering RWA exposure. This signals a maturation where utility and transparency are gaining ground over pure hype.
Identify protocols with demonstrable revenue generation from real-world use cases, like Hyperliquid, as potential outperformers. Focus on platforms that offer transparency and accountability, as market structure shifts towards more regulated and predictable venues.
The crypto market is undergoing a structural reset, moving away from a retail-driven, speculative cycle. Investors must adapt to a landscape where fresh capital is scarce, institutional flows favor gold, and DeFi's next frontier involves real-world assets.
The convergence of AI agents and programmable money is creating a new frontier for digital commerce and liability. This shift demands a proactive re-evaluation of regulatory frameworks, moving beyond human-centric definitions of accountability and transaction.
Builders should design AI agent systems with cryptographically embedded controls, allowing for granular policy enforcement (e.g., spending limits triggering human review) and leveraging stablecoins for microtransactions in decentralized agent-to-agent economies.
The next 6-12 months will see increasing pressure to define AI agent liability and payment rails. Investors should prioritize projects building infrastructure for secure, auditable agent commerce, while builders must integrate compliance and control mechanisms from day one to navigate this evolving landscape.
The economy is shifting from human-centric labor and scarcity to AI-driven abundance, where machine intelligence itself becomes the primary unit of economic exchange, challenging traditional monetary and employment structures.
Investigate and build "proof of control" solutions using crypto primitives (like ZKPs, TEEs, decentralized compute/storage) to secure AI agents and data.
The next 6-12 months will see increased demand for verifiable control over AI systems. Understanding how crypto enables this, and how human value shifts from transactional jobs to unique human interaction, is crucial for navigating this new economic reality.
AI's productivity boom is redirecting capital from financial engineering (buybacks) in large-cap tech to physical infrastructure (data centers, hardware).
Reallocate capital from over-concentrated, buyback-dependent large-cap tech into AI infrastructure plays (hardware, energy), commodities, and potentially regional banks, while actively managing duration risk in bonds.
The market's underlying structure is cracking. Passive investment in broad tech indices will likely yield poor real returns.