10 Hours of Listening.
5 Minutes of Reading.

Deep dives into the conversations shaping the future of AI, Robotics & Crypto.

Save hours of your time each week with our podcast aggregator

🔍 Search & Filter
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

AI Podcasts

December 30, 2025

Your Brain Doesn't Command Your Body. It Predicts It. [Max Bennett]

Machine Learning Street Talk

AI
Key Takeaways:
  1. The macro pivot: The transition from static data training to interactive world models that perform active inference.
  2. The tactical edge: Prioritize AI architectures that incorporate continual learning and hypothesis testing rather than just scaling parameters.
  3. The next decade belongs to those who replicate the biological transition from observation to interactive simulation.
See full notes
December 31, 2025

The Algorithm That IS The Scientific Method [Dr. Jeff Beck]

Machine Learning Street Talk

AI
Key Takeaways:
  1. The Macro Transition: Move from Big Data mimicry to Small Data causal reasoning.
  2. The Tactical Edge: Prioritize Active Inference frameworks that track uncertainty.
  3. AGI won't come from bigger LLMs; it will come from agents that possess a physics-grounded world model.
See full notes
December 30, 2025

[State of AI Startups] Memory/Learning, RL Envs & DBT-Fivetran — Sarah Catanzaro, Amplify

Latent Space

AI
Key Takeaways:
  1. The transition from stateless chat interfaces to stateful, personalized agents that learn from every interaction.
  2. Prioritize memory. If you are building an application, treat state management and continual learning as your core technical moat to prevent user churn.
  3. Stop chasing clones of existing apps for reinforcement learning. Use real-world logs and traces to build models that solve actual engineering friction.
See full notes
December 30, 2025

[State of RL/Reasoning] IMO/IOI Gold, OpenAI o3/GPT-5, and Cursor Composer — Ashvin Nair, Cursor

Latent Space

AI
Key Takeaways:
  1. The transition from internet-scale imitation to environment-scale RL.
  2. Build products that capture the full context of a professional's workflow to make them RL-ready.
  3. Intelligence is no longer the bottleneck. The winner will be whoever builds the best hard drive for professional context.
See full notes
December 31, 2025

[State of Post-Training] From GPT-4.1 to 5.1: RLVR, Agent & Token Efficiency — Josh McGrath, OpenAI

Latent Space

AI
Key Takeaways:
  1. The Macro Pivot: Intelligence is moving from a scarce resource to a commodity where the primary differentiator is the cost per task rather than raw model size.
  2. The Tactical Edge: Prioritize building on models that demonstrate high token efficiency to ensure your agentic workflows remain profitable as complexity grows.
  3. The Bottom Line: The next year will be defined by the systems vs. models tension. Success belongs to those who can engineer the environment as effectively as the algorithm.
See full notes
December 31, 2025

[State of Evals] LMArena's $100M Vision — Anastasios Angelopoulos, LMArena

Latent Space

AI
Key Takeaways:
  1. The transition from static benchmarks to "Vibe-as-a-Service" means model labs must optimize for human delight rather than just loss curves.
  2. Use Arena’s open-source data releases to fine-tune models on real-world prompt distributions.
  3. In a world of synthetic data and benchmark saturation, human preference is the only remaining scarce resource for validating frontier capabilities.
See full notes
December 31, 2025

[State of Context Engineering] Agentic RAG, Context Rot, MCP, Subagents — Nina Lopatina, Contextual

Latent Space

AI
Key Takeaways:
  1. The transition from Model-Centric to Context-Centric AI. As base models commoditize, the value moves to the proprietary data retrieval and prompt optimization layers.
  2. Implement an instruction-following re-ranker. Use small models to filter retrieval results before they hit the main context window to maintain high precision.
  3. Context is the new moat. Your ability to coordinate sub-agents and manage context rot will determine your product's reliability over the next year.
See full notes
December 31, 2025

[NeurIPS Best Paper] 1000 Layer Networks for Self-Supervised RL — Kevin Wang et al, Princeton

Latent Space

AI
Key Takeaways:
  1. The convergence of RL and self-supervised learning. As the boundary between "learning to see" and "learning to act" blurs, the winning agents will be those that treat the world as a giant classification problem.
  2. Prioritize depth over width. When building action-oriented models, increase layer count while maintaining residual paths to maximize intelligence per parameter.
  3. The "Scaling Laws" have arrived for RL. Expect a new class of robotics and agents that learn from raw interaction data rather than human-crafted reward functions.
See full notes
December 31, 2025

[State of AI Papers 2025] Fixing Research with Social Signals, OCR & Implementation — Team AlphaXiv

Latent Space

AI
Key Takeaways:
  1. The Age of Scaling is hitting a wall, leading to a migration toward reasoning and recursive models like TRM that win on efficiency.
  2. Filter your research feed by implementation ease rather than just citation count to accelerate your development cycle.
  3. In a world of AI-generated paper slop, the ability to quickly spin up a sandbox and verify code is the only sustainable competitive advantage for AI labs.
See full notes

Crypto Podcasts

February 7, 2026

How Chutes Hit 160B Tokens/Day (Without Centralized Infrastructure)

The Opentensor Foundation | Bittensor TAO

Crypto
Key Takeaways:
  1. The commodification of AI compute, driven by decentralized networks, is shifting power from centralized data centers to globally distributed, incentive-aligned miners. This creates a more efficient, resilient, and cost-effective foundation for intelligence.
  2. Explore building AI agents and applications on Shoots' expanding platform, leveraging their TEEs and end-to-end encryption for privacy-sensitive use cases. The "Sign in with Shoots" OAuth system offers a compelling way to integrate AI capabilities without upfront compute costs.
  3. Shoots is not just an inference provider; it's building the foundational infrastructure for a truly decentralized, private, and intelligent internet. Over the next 6-12 months, expect to see a proliferation of sophisticated AI agents and applications built on Shoots, driven by its unique blend of incentives, security, and global compute.
See full notes
February 7, 2026

Vitalik Signals the End of the Rollup-Centric Roadmap: What's Next?

Bankless

Crypto
Key Takeaways:
  1. The Macro Shift: Ethereum pivots from a "rollup-centric" vision to a multi-faceted approach: a powerful, ZKVM-scaled L1 coexists with a diverse "alliance" of specialized L2s. This adapts to technical realities and renews L1's core focus.
  2. The Tactical Edge: Builders should prioritize differentiated L2 solutions or contribute to L1's ZKVM scaling. Investors should evaluate L2s based on distinct utility and symbiotic relationship with Ethereum.
  3. The Bottom Line: Ethereum's market leadership remains, but this pivot signals a pragmatic roadmap. The next 6-12 months will see rallying around L1 ZKVM scaling and clearer L2 roles, demanding sharper focus on where value accrual and innovation occur.
See full notes
February 6, 2026

'No More Dry Powder to Come Into Tokens': Why Crypto Is Down

Unchained

Crypto
Key Takeaways:
  1. Global liquidity is high, but capital is reallocating from speculative crypto to traditional stores of value and, paradoxically, to DeFi platforms offering RWA exposure. This signals a maturation where utility and transparency are gaining ground over pure hype.
  2. Identify protocols with demonstrable revenue generation from real-world use cases, like Hyperliquid, as potential outperformers. Focus on platforms that offer transparency and accountability, as market structure shifts towards more regulated and predictable venues.
  3. The crypto market is undergoing a structural reset, moving away from a retail-driven, speculative cycle. Investors must adapt to a landscape where fresh capital is scarce, institutional flows favor gold, and DeFi's next frontier involves real-world assets.
See full notes
February 6, 2026

Is Crypto Focusing on the Wrong Regulatory Fight? DEX in the City

Unchained

Crypto
Key Takeaways:
  1. The convergence of AI agents and programmable money is creating a new frontier for digital commerce and liability. This shift demands a proactive re-evaluation of regulatory frameworks, moving beyond human-centric definitions of accountability and transaction.
  2. Builders should design AI agent systems with cryptographically embedded controls, allowing for granular policy enforcement (e.g., spending limits triggering human review) and leveraging stablecoins for microtransactions in decentralized agent-to-agent economies.
  3. The next 6-12 months will see increasing pressure to define AI agent liability and payment rails. Investors should prioritize projects building infrastructure for secure, auditable agent commerce, while builders must integrate compliance and control mechanisms from day one to navigate this evolving landscape.
See full notes
February 7, 2026

What Do Jobs and Money Look Like in a Post-Human Economy?

Unchained

Crypto
Key Takeaways:
  1. The economy is shifting from human-centric labor and scarcity to AI-driven abundance, where machine intelligence itself becomes the primary unit of economic exchange, challenging traditional monetary and employment structures.
  2. Investigate and build "proof of control" solutions using crypto primitives (like ZKPs, TEEs, decentralized compute/storage) to secure AI agents and data.
  3. The next 6-12 months will see increased demand for verifiable control over AI systems. Understanding how crypto enables this, and how human value shifts from transactional jobs to unique human interaction, is crucial for navigating this new economic reality.
See full notes
February 6, 2026

Markets Are Entering A New Era Of AI-Driven Disruption | Weekly Roundup

Forward Guidance

Crypto
Key Takeaways:
  1. AI's productivity boom is redirecting capital from financial engineering (buybacks) in large-cap tech to physical infrastructure (data centers, hardware).
  2. Reallocate capital from over-concentrated, buyback-dependent large-cap tech into AI infrastructure plays (hardware, energy), commodities, and potentially regional banks, while actively managing duration risk in bonds.
  3. The market's underlying structure is cracking. Passive investment in broad tech indices will likely yield poor real returns.
See full notes