10 Hours of Listening.
5 Minutes of Reading.

Deep dives into the conversations shaping the future of AI, Robotics & Crypto.

Save hours of your time each week with our podcast aggregator

🔍 Search & Filter
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

AI Podcasts

December 30, 2025

Your Brain Doesn't Command Your Body. It Predicts It. [Max Bennett]

Machine Learning Street Talk

AI
Key Takeaways:
  1. The macro pivot: The transition from static data training to interactive world models that perform active inference.
  2. The tactical edge: Prioritize AI architectures that incorporate continual learning and hypothesis testing rather than just scaling parameters.
  3. The next decade belongs to those who replicate the biological transition from observation to interactive simulation.
See full notes
December 31, 2025

The Algorithm That IS The Scientific Method [Dr. Jeff Beck]

Machine Learning Street Talk

AI
Key Takeaways:
  1. The Macro Transition: Move from Big Data mimicry to Small Data causal reasoning.
  2. The Tactical Edge: Prioritize Active Inference frameworks that track uncertainty.
  3. AGI won't come from bigger LLMs; it will come from agents that possess a physics-grounded world model.
See full notes
December 30, 2025

[State of AI Startups] Memory/Learning, RL Envs & DBT-Fivetran — Sarah Catanzaro, Amplify

Latent Space

AI
Key Takeaways:
  1. The transition from stateless chat interfaces to stateful, personalized agents that learn from every interaction.
  2. Prioritize memory. If you are building an application, treat state management and continual learning as your core technical moat to prevent user churn.
  3. Stop chasing clones of existing apps for reinforcement learning. Use real-world logs and traces to build models that solve actual engineering friction.
See full notes
December 30, 2025

[State of RL/Reasoning] IMO/IOI Gold, OpenAI o3/GPT-5, and Cursor Composer — Ashvin Nair, Cursor

Latent Space

AI
Key Takeaways:
  1. The transition from internet-scale imitation to environment-scale RL.
  2. Build products that capture the full context of a professional's workflow to make them RL-ready.
  3. Intelligence is no longer the bottleneck. The winner will be whoever builds the best hard drive for professional context.
See full notes
December 31, 2025

[State of Post-Training] From GPT-4.1 to 5.1: RLVR, Agent & Token Efficiency — Josh McGrath, OpenAI

Latent Space

AI
Key Takeaways:
  1. The Macro Pivot: Intelligence is moving from a scarce resource to a commodity where the primary differentiator is the cost per task rather than raw model size.
  2. The Tactical Edge: Prioritize building on models that demonstrate high token efficiency to ensure your agentic workflows remain profitable as complexity grows.
  3. The Bottom Line: The next year will be defined by the systems vs. models tension. Success belongs to those who can engineer the environment as effectively as the algorithm.
See full notes
December 31, 2025

[State of Evals] LMArena's $100M Vision — Anastasios Angelopoulos, LMArena

Latent Space

AI
Key Takeaways:
  1. The transition from static benchmarks to "Vibe-as-a-Service" means model labs must optimize for human delight rather than just loss curves.
  2. Use Arena’s open-source data releases to fine-tune models on real-world prompt distributions.
  3. In a world of synthetic data and benchmark saturation, human preference is the only remaining scarce resource for validating frontier capabilities.
See full notes
December 31, 2025

[State of Context Engineering] Agentic RAG, Context Rot, MCP, Subagents — Nina Lopatina, Contextual

Latent Space

AI
Key Takeaways:
  1. The transition from Model-Centric to Context-Centric AI. As base models commoditize, the value moves to the proprietary data retrieval and prompt optimization layers.
  2. Implement an instruction-following re-ranker. Use small models to filter retrieval results before they hit the main context window to maintain high precision.
  3. Context is the new moat. Your ability to coordinate sub-agents and manage context rot will determine your product's reliability over the next year.
See full notes
December 31, 2025

[NeurIPS Best Paper] 1000 Layer Networks for Self-Supervised RL — Kevin Wang et al, Princeton

Latent Space

AI
Key Takeaways:
  1. The convergence of RL and self-supervised learning. As the boundary between "learning to see" and "learning to act" blurs, the winning agents will be those that treat the world as a giant classification problem.
  2. Prioritize depth over width. When building action-oriented models, increase layer count while maintaining residual paths to maximize intelligence per parameter.
  3. The "Scaling Laws" have arrived for RL. Expect a new class of robotics and agents that learn from raw interaction data rather than human-crafted reward functions.
See full notes
December 31, 2025

[State of AI Papers 2025] Fixing Research with Social Signals, OCR & Implementation — Team AlphaXiv

Latent Space

AI
Key Takeaways:
  1. The Age of Scaling is hitting a wall, leading to a migration toward reasoning and recursive models like TRM that win on efficiency.
  2. Filter your research feed by implementation ease rather than just citation count to accelerate your development cycle.
  3. In a world of AI-generated paper slop, the ability to quickly spin up a sandbox and verify code is the only sustainable competitive advantage for AI labs.
See full notes

Crypto Podcasts

January 24, 2026

Gold Sets the Bar, But Bitcoin Can Catch Up. Here’s How: Bits + Bips

Unchained

Crypto
Key Takeaways:
  1. The institutionalization of Bitcoin has temporarily sacrificed its digital gold status for liquidity, creating a massive opportunity for those who can stomach the volatility before the next decoupling.
  2. Monitor Japanese government bond yields as a leading indicator for global risk tolerance.
  3. Bitcoin is currently a liquidity sponge, not a bunker. Expect it to follow the Trump Put and tech earnings until its volatility profile mirrors a currency rather than a speculative stock.
See full notes
January 23, 2026

The Intersection of AI and Crypto: What Worked, What Didn’t, and What’s Next | Roundup

Bell Curve

Crypto
Key Takeaways:
  1. The market is moving from the "Compute Layer" to the "Agentic Layer." Owning the GPU is less valuable than owning the agent that controls the wallet.
  2. Build agent-first interfaces. Stop designing for human clicks and start structuring your data so an LLM can execute transactions on your behalf.
  3. The next 12 months belong to on-chain agents that handle treasury ops and commerce. The "decentralized GPU" narrative is dead. The "AI Agent with a bank account" narrative is just beginning.
See full notes
January 23, 2026

The “Quantum Threat” Behind Bitcoin’s Sudden Sell-Off

Bankless

Crypto
Key Takeaways:
  1. The transition from global cooperation to regional protectionism is driving a capital outflow loop that favors hard assets over sovereign debt.
  2. Monitor the development of quantum-resistant signatures on alternative L1s to hedge against Bitcoin’s potential cryptographic obsolescence.
  3. The next year will be defined by the race to tokenize real-world assets and the struggle to maintain protocol relevance as TradFi giants enter the arena.
See full notes
January 22, 2026

DePIN’s Biggest New Deal: Valeo x NATIX | Alireza Ghods

Proof of Coverage Media

Crypto
Key Takeaways:
  1. The transition from digital-only AI to Physical AI requires a massive bridge of high-fidelity video data.
  2. Monitor DePIN projects that move from "map-to-earn" to "train-to-earn" for foundational models.
  3. NATIX is no longer just a mapping company; it is the data refinery for the next generation of autonomous machines.
See full notes
January 21, 2026

Markets Are Entering A Wartime Economy | Cem Karsan

Forward Guidance

Crypto
Key Takeaways:
  1. The transition from a supply-side model to a populist-driven wartime economy makes inflation a permanent feature rather than a bug.
  2. Rotate out of traditional portfolios into non-correlated volatility strategies and hard assets.
  3. The next decade belongs to those who recognize that the rules-based order has been replaced by a raw competition for strategic resources.
See full notes
January 21, 2026

How Nansen’s New Trading Agent Makes It Easier to Follow the Smart Money Onchain

Unchained

Crypto
Key Takeaways:
  1. The commoditization of technical infrastructure means alpha moves from who has the data to who has the best prompts.
  2. Test agentic workflows with small capital amounts to identify where natural language outperforms manual execution.
  3. The next 12 months will see a transition from manual click-and-sign trading to intent-based portfolio management.
See full notes