10 Hours of Listening.
5 Minutes of Reading.

Deep dives into the conversations shaping the future of AI, Robotics & Crypto.

Save hours of your time each week with our podcast aggregator

🔍 Search & Filter
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

AI Podcasts

December 15, 2025

Building in the Gemini Era – Kat Kampf & Ammaar Reshi, Google DeepMind

AI Engineer

AI
Key Takeaways:
  1. Intent Over Implementation: The value in software creation shifts from low-level coding to clearly defining intent and design, with AI handling the technical execution.
  2. Rapid Prototyping: Builders can now rapidly prototype and deploy complex, full-stack applications, significantly compressing development cycles and lowering entry barriers.
  3. New Creator Economy: Expect a surge in non-technical creators building sophisticated applications, driving innovation in UI/UX and personalized content.
See full notes
December 15, 2025

The Renaissance of the American Factory | a16z 2026 Big Ideas

a16z

AI
Key Takeaways:
  1. Strategic Shift: The "factory-first" mindset is a strategic reorientation towards physical production, enabled by AI, extending beyond traditional manufacturing to all large-scale infrastructure.
  2. Builder/Investor Note: Focus on companies applying modular design, AI-driven process optimization, and automation to sectors like housing, energy, and mining. Data centers are a leading indicator for these trends.
  3. The "So What?": Rebuilding America's industrial capacity through these methods offers a competitive advantage, impacting defense, consumer goods, and commercial sectors in the next 6-12 months.
See full notes
December 13, 2025

Minimax M2 – Olive Song, MiniMax

AI Engineer

AI
Key Takeaways:
  1. Strategic Implication: The future of AI agents hinges on practical utility and adaptive reasoning, not just raw scale. Models that integrate expert feedback and iterative thinking will outperform those focused solely on benchmarks.
  2. Builder/Investor Note: Builders should prioritize robust generalization through diverse training perturbations. Investors should seek models that demonstrate real-world adoption and cost-effective scalability for multi-agent architectures.
  3. The So What?: The next 6-12 months will see a shift towards smaller, highly specialized, and deeply integrated AI models that function as reliable co-workers, driving efficiency in developer workflows and complex agentic tasks.
See full notes
December 14, 2025

From Vibe Coding To Vibe Engineering – Kitze, Sizzy

AI Engineer

AI
Key Takeaways:
  1. Strategic Shift: The industry is moving from code generation to code orchestration. The value lies in guiding AI, not just prompting it.
  2. Builder/Investor Note: Invest in tools that enhance "vibe engineering" (real-time steering, context management) and education for senior developers. Avoid strategies that solely rely on AI to replace junior talent without skilled oversight.
  3. The "So What?": Over the next 6-12 months, the ability to effectively "vibe engineer" will become a critical differentiator, separating high-performing teams from those drowning in AI-generated "slop."
See full notes
December 13, 2025

The Mathematical Foundations of Intelligence [Professor Yi Ma]

Machine Learning Street Talk

AI
Key Takeaways:
  1. Strategic Implication: The next frontier in AI involves a fundamental shift from statistical compression to genuine abstraction and understanding.
  2. Builder/Investor Note: Focus on research and development that grounds AI in first principles, leading to more robust, efficient, and interpretable systems, rather than solely scaling existing empirical architectures.
  3. The "So What?": The pursuit of mathematically derived, parsimonious, and self-consistent AI architectures offers a path to overcome current limitations, enabling systems that truly learn, adapt, and reason in the next 6-12 months and beyond.
See full notes
December 12, 2025

Deciphering Secrets of Ancient Civilizations, Noah's Ark, and Flood Myths | Lex Fridman Podcast #487

Lex Fridman

AI
Key Takeaways:
  1. Data Scarcity is a Feature, Not a Bug: Be wary of narratives built on incomplete data. Just because a dataset (on-chain, AI training) is all we have, doesn't mean it's representative.
  2. Standardization is Survival: For any new technology (crypto protocols, AI models), robust "lexicography" and clear documentation are critical for long-term adoption and preventing fragmentation.
  3. Question the "Received Law": Don't assume current "archaeological evidence" (e.g., current blockchain data, AI model limitations) tells the whole story. Look for the "perishable materials" that might be missing.
See full notes
December 11, 2025

Can you prove AI ROI in Software Eng? (Stanford 120k Devs Study) – Yegor Denisov-Blanch, Stanford

AI Engineer

AI
Key Takeaways:
  1. Strategic Shift: AI ROI isn't about adoption, it's about intelligent adoption. The gap between top and bottom performers will widen based on measurement sophistication and codebase health.
  2. Builder/Investor Note: For builders, prioritize codebase hygiene and engineer training before or concurrently with AI rollout. For investors, scrutinize AI productivity claims; ask about code quality, rework rates, and specific measurement frameworks beyond simple usage.
  3. The "So What?": In the next 6-12 months, companies that master AI integration by focusing on quality, measurement, and environment will compound their gains, while those chasing superficial metrics risk significant tech debt and negative ROI.
See full notes
December 11, 2025

The State of AI Code Quality: Hype vs Reality — Itamar Friedman, Qodo

AI Engineer

AI
Key Takeaways:
  1. Strategic Implication: The next frontier of AI in software isn't just *generating* code, but *governing* its quality. This shift will redefine competitive advantage.
  2. Builder/Investor Note: Prioritize investments in AI-powered quality gates, intelligent code review, and dynamic testing. For builders, feed your AI tools rich, comprehensive context. For investors, look for companies building these "picks and shovels."
  3. The "So What?": The promised 2x-10x productivity gains are real, but they won't come from raw code generation alone. The next 6-12 months will see a scramble to implement agentic, context-aware quality workflows to unlock AI's true potential across the SDLC.
See full notes
December 12, 2025

Hard Won Lessons from Building Effective AI Coding Agents – Nik Pash, Cline

AI Engineer

AI
Key Takeaways:
  1. Strategic Shift: The competitive edge in AI agents is moving from clever architecture to superior model training data and robust RL environments.
  2. Builder/Investor Note: Prioritize raw model capability over complex agent stacks. Builders should contribute to open-source RL environments; investors should seek companies focused on generating and leveraging high-quality training data.
  3. The "So What?": The next 6-12 months will see a race to build and utilize real-world, outcome-driven benchmarks. Open initiatives like Client Bench could democratize model improvement and accelerate AI development significantly.
See full notes

Crypto Podcasts

February 10, 2025

Crypto's Ultimate End State With Avery Ching

Empire

Crypto
Infrastructure

Key Takeaways:

  • 1. Aptos Leads with Superior Scalability: Demonstrates industry-leading transaction capabilities, setting a new standard for blockchain performance.
  • 2. Strategic Ecosystem Support: Comprehensive support for developers and a strong regional focus are key drivers for Aptos' growth and adoption.
  • 3. Future-Proof Architecture: Aptos’ vision for interoperability and fewer, more efficient chains highlights its commitment to sustainable blockchain infrastructure.
See full notes
February 10, 2025

Jeffrey "Jiho" Zirlin: Ronin Goes Permissionless

Delphi Digital

Crypto
Infrastructure
DeFi

Key Takeaways:

  • 1. Strategic Infrastructure Development: Building tailored blockchain solutions like Ronin is crucial for scaling successful blockchain games and attracting high-quality projects.
  • 2. Quality-Driven Ecosystem Growth: Focusing on curated partnerships ensures sustainable growth and robust economic models, setting the foundation for long-term success.
  • 3. Innovative Tokenomics: Advanced economic strategies and dynamic NFTs are essential for creating resilient and engaging play-to-earn ecosystems, driving user retention and market stability.
See full notes
February 8, 2025

NS032 - dTAO Governance :: Vote in Progress :: Major Network Upgrade

Opentensor Foundation

DeFi
Crypto
Infrastructure

Key Takeaways:

  • 1. Strategic Scaling: The dTAO vote introduces a robust framework for subnet expansion, balancing rapid growth with economic stability.
  • 2. Stable Tokenomics: The EMA-based TOA emission design ensures fair and tamper-resistant token distribution, safeguarding investor interests.
  • 3. Decentralized Governance: Active community participation is crucial for successful network upgrades, reinforcing BitTensor’s decentralized ethos.
See full notes
February 8, 2025

"The person who controls the memes controls the world" - Luca Netz

Bankless

Crypto
Others

Key Takeaways:

  • 1. Meme coins are evolving into multifaceted entities that serve as cultural, community, and ecosystem pillars, offering diverse functionalities beyond their meme origins.
  • 2. Effective marketing strategies and compelling origin stories are crucial in building strong communities and driving the real-world adoption of meme coins.
  • 3. Controlling meme narratives is a powerful tool for influencing societal trends and can determine the global impact and success of a meme coin.
See full notes