From Singular Logic to Pluralistic Systems. As we build complex AI, we must move from seeking one "correct" model to managing a multiverse of conflicting but internally consistent logical frameworks.
Audit for Incompleteness. When designing protocols, identify the "independent" variables that your system cannot prove or settle internally.
Truth is bigger than code. Over the next year, the winners will be those who stop trying to "solve" the universe and start navigating the multiverse of possible truths.
Outcome-Based Intelligence. We are moving from AI as a Service to AI as an Outcome where value is tied to results rather than usage.
Target Non-Public Data. Build applications in sectors like law or lending where the most valuable data is private and un-crawlable.
The next two years will separate companies that use AI to save pennies from those that use AI to capture entire markets through autonomous systems and proprietary data loops.
The transition from stateless chat interfaces to stateful, personalized agents that learn from every interaction.
Prioritize memory. If you are building an application, treat state management and continual learning as your core technical moat to prevent user churn.
Stop chasing clones of existing apps for reinforcement learning. Use real-world logs and traces to build models that solve actual engineering friction.
The Macro Pivot: Intelligence is moving from a scarce resource to a commodity where the primary differentiator is the cost per task rather than raw model size.
The Tactical Edge: Prioritize building on models that demonstrate high token efficiency to ensure your agentic workflows remain profitable as complexity grows.
The Bottom Line: The next year will be defined by the systems vs. models tension. Success belongs to those who can engineer the environment as effectively as the algorithm.
The transition from Model-Centric to Context-Centric AI. As base models commoditize, the value moves to the proprietary data retrieval and prompt optimization layers.
Implement an instruction-following re-ranker. Use small models to filter retrieval results before they hit the main context window to maintain high precision.
Context is the new moat. Your ability to coordinate sub-agents and manage context rot will determine your product's reliability over the next year.
The Macro Transition: Privacy-First Infrastructure. As the novelty of public ledgers fades, the market is moving toward selective transparency where institutions control data visibility.
The Tactical Edge: Audit Canton. Builders should evaluate the Canton Network for any application involving sensitive corporate data or institutional capital flows.
The Bottom Line: Institutional adoption won't happen on public chains as they exist today. The next phase of growth belongs to networks that treat privacy as a foundational requirement for compliance and scale.
The Macro Transition: The move from growth at any price to hard assets for a new order is being fueled by a combination of US political shifts and Japanese monetary instability.
The Tactical Edge: Accumulate GDX and XME on pullbacks while avoiding the retail cheerleading traps in silver handles.
The Bottom Line: The next 12 months will reward those who trade breakouts in physical production and energy rather than those clinging to the 2023 tech playbook.
The Macro Transition: Institutional Convergence. Crypto is shedding its speculative skin to become a fundamental asset class. This transition mirrors the 2002 post-bubble internet era where utility replaced hype.
The Tactical Edge: Identify the Compounders. Focus on protocols with durable income and deep moats. Avoid the "L1 rotation" and prioritize DeFi entities integrating with real-world credit markets.
The Bottom Line: 2026 is about survival and positioning. The winners will be those who build sustainable equity value rather than chasing the next speculative token flip.