10 Hours of Listening.
5 Minutes of Reading.

Deep dives into the conversations shaping the future of AI, Robotics & Crypto.

Save hours of your time each week with our podcast aggregator

🔍 Search & Filter
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

AI Podcasts

May 3, 2025

Bittensor is fair ai for all

Ventura Labs

AI
Key Takeaways:
  1. Unprecedented Fairness: Bittensor levels the AI playing field, allowing anyone to invest, build, and own a piece of the future, unlike the VC-dominated status quo.
  2. Democracy vs. Monopoly: Centralized AI is a risky bet; Bittensor offers a necessary democratic alternative, distributing power and aligning incentives broadly.
  3. Tokenizing Tech Value: By applying Bitcoin-like tokenomics, Bittensor pioneers a new, legitimate way to create and capture value in cutting-edge AI development.
See full notes
May 2, 2025

What Is an AI Agent?

a16z

AI
Key Takeaways:
  1. Define by Function, Not Hype: The term "agent" is ambiguous; focus on specific functionalities like LLMs in loops, tool use, and planning capabilities rather than the label itself.
  2. Augmentation Over Replacement: Current AI, including "agents," primarily enhances human productivity and potentially slows hiring growth, rather than directly replacing most human roles which involve creativity and complex decision-making.
  3. Towards "Normal Technology": The ultimate goal is for AI capabilities to become seamlessly integrated, like electricity or the internet, moving beyond the "agent" buzzword towards powerful, normalized tools.
See full notes
May 1, 2025

LMArena has a big problem

Machine Learning Street Talk

AI
Key Takeaways:
  1. **No More Stealth Deletes:** Models submitted to public benchmarks must remain public permanently.
  2. **Fix the Sampling:** LMArena must switch from biased uniform sampling to a statistically sound method like information gain.
  3. **Look Beyond the Leaderboard:** Relying solely on LMArena is risky; consider utility-focused benchmarks like OpenRouter for a more grounded assessment.
See full notes
April 30, 2025

Sam Lehman: What the Reinforcement Learning Renaissance Means for Decentralized AI

Delphi Digital

AI
Key Takeaways:
  1. RL is the New Scaling Frontier: Forget *just* bigger models; refining models via RL and inference-time compute is driving massive performance gains (DeepSeek, 03), focusing value on the *process* of reasoning.
  2. Decentralized RL Unlocks Experimentation: Open "Gyms" for generating and verifying reasoning traces across countless domains could foster innovation beyond the scope of any single company.
  3. Base Models + RL = Synergy: Peak performance requires both: powerful foundational models (better pre-training still matters) *and* sophisticated RL fine-tuning to elicit desired behaviors efficiently.
See full notes
April 28, 2025

Enabling AI Models to Drive Robots with the BitRobot Network | Michael Cho

Proof of Coverage Media

AI
Key Takeaways:
  1. Real-World Robotics Needs Real-World Data: Embodied AI's progress hinges on generating diverse physical interaction data and overcoming the slow, costly bottleneck of real-world testing – a key area BitRobot targets.
  2. Decentralized Networks are Key: Crypto incentives (à la Helium/BitTensor) offer a viable path to coordinate the distributed collection of data, provision of compute, and training of models needed for generalized robotics AI.
  3. Cross-Embodiment is the Goal: Building truly foundational robotic models requires aggregating data from *many* different robot types, not just scaling data from one type; BitRobot's multi-subnet, multi-embodiment approach aims for this.
See full notes
April 25, 2025

Brody Adreon: Bittensor, AI, crypto, community, KOLs, price dynamics, OpenAI, TAO, Alpha | Ep. 39

Ventura Labs

AI
Key Takeaways:
  1. Focus on Fundamentals: Prioritize subnet vision and productivity over short-term Alpha token volatility; information asymmetry still provides edge.
  2. Trust is Currency: Scrutinize claims and value authentic actors; verifiable data and genuine communication are paramount in a speculative market.
  3. Creativity Unleashed: Bittensor's decentralized "shotgun effect" fosters broad experimentation, potentially unlocking value overlooked by centralized AI labs.
See full notes
April 24, 2025

From Healthcare to Weather: Why Federated AI Could Change Everything, W/ Nic Lane

The People's AI

AI
Key Takeaways:
  1. Data Access is the New Moat: Centralized AI is hitting a data wall; FL unlocks siloed, high-value datasets (healthcare, finance, edge devices), creating an "unfair advantage."
  2. FL is Technically Viable at Scale: Recent thousandfold efficiency gains and successful large model training (up to 20B parameters) prove FL can compete with, and potentially surpass, centralized approaches.
  3. User-Owned Data Meets Decentralized Training: Platforms like Vanna enabling data DAOs, combined with frameworks like Flower, create the infrastructure for a new generation of AI built on diverse, user-contributed data – enabling applications from hyperlocal weather to personalized medicine.
See full notes
April 24, 2025

What Comes After Mobile? Meta’s Andrew Bosworth on AI and Consumer Tech

a16z

AI
Key Takeaways:
  1. **The App Store As We Know It Is Living On Borrowed Time:** AI's ability to understand intent could obliterate the need for users to consciously select specific apps, shifting power to AI orchestrators and prioritizing performance over brand.
  2. **AR Glasses Are The Heir Apparent To The Phone:** Meta is betting the farm that AI-infused glasses will replace the smartphone within the next decade, representing the next great platform shift despite monumental risks.
  3. **Open Source AI Is A Strategic Power Play:** Commoditizing foundational AI models benefits the entire ecosystem *and* strategically advantages major application players like Meta who rely on ubiquitous, cheap AI components.
See full notes
April 23, 2025

From Healthcare to Weather: Why Federated AI Could Change Everything, w/ Nic Lane

The People's AI

AI
Key Takeaways:
  1. Data is the Differentiator: Centralized AI is hitting data limits; FL unlocks vast, siloed datasets (healthcare, finance, edge devices), offering a path to superior models.
  2. FL is Ready for Prime Time: Technical hurdles like latency are being rapidly overcome (~1000x efficiency gains reported), making large-scale federated training feasible and competitive *now*.
  3. Decentralization Enables New Use Cases: Expect FL to power personalized medicine, smarter robotics, hyper-local forecasts, and user-controlled AI agents – applications impossible when data must be centralized.
See full notes

Crypto Podcasts

February 5, 2026

AI on Ethereum: ERC-8004, x402, OpenClaw and the Botconomy

Bankless

Crypto
Key Takeaways:
  1. Autonomous agents will drive the next wave of internet GDP.
  2. Builders should create AI-native tooling and services leveraging ERC-8004 for agent identity/reputation, and X402 for fluid payments.
  3. Investors and builders must recognize that AI agents will soon be dominant users and creators of value onchain.
See full notes
February 5, 2026

Crypto Stress Test: Fees, Volatility, and Chain Performance

Lightspeed

Crypto
Key Takeaways:
  1. Evaluate L1s and app-specific protocols not just on throughput, but on their explicit value capture mechanisms.
  2. Prioritize protocols that directly align user activity and protocol revenue with token value, as seen in Hyperliquid's buyback model, over those with less direct or diluted value accrual to the native asset.
  3. Chains that can maintain low, stable fees during peak demand and clearly articulate how their native token captures value from growing on-chain activity will attract both users and capital.
See full notes
February 5, 2026

Alchemy CEO: Why AI Agents Need Crypto More Than Humans Do with Nikhil Viswanathan

The Rollup

Crypto
Key Takeaways:
  1. The convergence of AI and crypto is not just a technological trend; it's a foundational shift towards a digital society where AI agents are first-class economic citizens.
  2. Build agent-native financial primitives. Focus on creating protocols and services that allow AI agents to autonomously transact, manage assets, and interact with digital property without human intervention.
  3. The question isn't if digital currency and AI agents will dominate, but when and how.
See full notes
February 4, 2026

The Robot Revolution Is Here: Warehouse Automation, Humanoids, and What Comes Next

The People's AI

Crypto
Key Takeaways:
  1. The AI-driven automation is not a sudden, generalist humanoid takeover, but a gradual, specialized deployment.
  2. Invest in or build solutions for industrial automation, logistics, and specialized service robotics (e.g., medical, waste management).
  3. The next 5-10 years will see significant, quiet growth in non-humanoid, task-specific robots transforming supply chains, manufacturing, and healthcare.
See full notes
February 4, 2026

The Dogecoin Community Might Sh**t me for Saying This...

The DCo Podcast

Crypto
Key Takeaways:
  1. The ongoing global distrust in centralized financial systems fuels a search for decentralized alternatives, yet the crypto market's focus on "store of value" assets like Bitcoin risks missing the original intent of a truly global, fair means of exchange, a gap Dogecoin aims to fill.
  2. Re-evaluate digital asset utility beyond speculative store-of-value narratives, considering projects actively pursuing frictionless, low-cost means of exchange.
  3. The long-term viability of decentralized finance hinges on its ability to deliver practical, everyday utility, not just investment returns. This means projects focused on transactional efficiency could gain significant ground in the coming 6-12 months.
See full notes
February 4, 2026

Quadrillions: Stablecoins: We’ve Only Just Begun | Mohamed Afifi

Empire

Crypto
Key Takeaways:
  1. Build infrastructure that simplifies blockchain complexity and stablecoin fragmentation for end-users and enterprises. This is where the next wave of value creation lies.
  2. The global financial system's slowness and cost are directly challenged by programmable stablecoins, moving them from speculative assets to essential, low-cost, high-speed infrastructure.
  3. Stablecoins are moving from a crypto-native tool to a core layer for global finance.
See full notes