10 Hours of Listening.
5 Minutes of Reading.

Deep dives into the conversations shaping the future of AI, Robotics & Crypto.

Save hours of your time each week with our podcast aggregator

🔍 Search & Filter
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

AI Podcasts

December 16, 2025

Why Physical AI Needs a new Data Set | Rerun CEO

Weights & Biases

AI
Key Takeaways:
  1. Data Infrastructure is the Next Bottleneck: The physical AI sector's growth hinges on specialized data tooling that can handle multimodal, multi-rate, episodic data, moving beyond traditional tabular models.
  2. Builders, Prioritize Robustness: Focus on building systems that handle real-world variability and simplify data pipelines. Leverage open-source tools and consider combining imitation and reinforcement learning.
  3. The "So What?": The next 6-12 months will see significant improvements in robot robustness and the ability to perform longer, more complex tasks. This progress will be driven by better data management, making the gap between lab demos and deployable products narrower.
See full notes
December 16, 2025

Build reliable AI agents using W&B Training

Weights & Biases

AI
Key Takeaways:
  1. The democratization of RL for LLMs will accelerate the deployment of more reliable and sophisticated AI agents across industries.
  2. Builders should move beyond basic prompt engineering and RAG. RL fine-tuning, now accessible via W&B Serverless RL, is a critical next step for high-stakes agentic applications.
  3. For the next 6-12 months, expect a surge in production-grade AI agents, with open-source models increasingly closing the performance gap with proprietary alternatives through advanced fine-tuning.
See full notes
December 15, 2025

Coding Evals: From Code Snippets to Codebases – Naman Jain, Cursor

AI Engineer

AI
Key Takeaways:
  1. Dynamic Evaluation is Non-Negotiable: Static benchmarks are dead. Future AI development demands continuously updated, contamination-resistant evaluation sets.
  2. AI Needs AI to Judge AI: As models grow more sophisticated, LLM-driven "hack detectors" become essential for ensuring code quality and preventing adversarial exploitation of evaluation systems.
  3. User Experience Drives Adoption: For interactive AI coding tools, prioritize low latency and human-centric design; technical prowess alone will not guarantee real-world usage.
See full notes
December 15, 2025

Building in the Gemini Era – Kat Kampf & Ammaar Reshi, Google DeepMind

AI Engineer

AI
Key Takeaways:
  1. Strategic Implication: The value in software development shifts from manual coding to high-level architectural design and prompt engineering.
  2. Builder/Investor Note: Experiment with AI Studio's agentic and design capabilities. Focus on describing desired functionality rather than low-level code.
  3. The "So What?": The next 6-12 months will see a surge in AI-powered, full-stack applications built by a broader range of creators, disrupting traditional development paradigms.
See full notes
December 16, 2025

What We Learned Deploying AI within Bloomberg’s Engineering Organization – Lei Zhang, Bloomberg

AI Engineer

AI
Key Takeaways:
  1. Strategic Shift: AI's impact extends beyond simple productivity. The real opportunity lies in fundamentally changing the cost function of engineering, making previously expensive or undesirable tasks cheap and feasible.
  2. Platform Imperative: For large organizations, a "golden path" platform is not optional. It's how you manage complexity, ensure quality, and scale AI adoption safely and efficiently.
  3. Human-Centric Adaptation: Technology is only half the battle. Investing in cultural adaptation, community building, and leadership training is crucial for realizing AI's full potential.
See full notes
December 16, 2025

Your Support Team Should Ship Code – Lisa Orr, Zapier

AI Engineer

AI
Key Takeaways:
  1. Strategic Implication: Companies integrating AI-driven code generation into non-engineering roles will see significant efficiency gains and improved product reliability.
  2. Builder/Investor Note: Focus on building AI tools that deeply embed into existing workflows. Orchestration of multiple AI tools into an agent-like system is key for adoption and value.
  3. The "So What?": The next 6-12 months will see a redefinition of "support" from reactive reporting to proactive, code-shipping problem-solving, unlocking new talent pools and accelerating development cycles.
See full notes
December 16, 2025

Finding The 1% of Stocks That Matter | Henry Ellenbogen Interview

Invest Like The Best

AI
Key Takeaways:
  1. Strategic Implication: The AI era will disproportionately reward existing businesses that deeply integrate AI to create unassailable cost structures, not just new AI-native ventures.
  2. Builder/Investor Note: Seek out resilient "Act II" leaders who embrace the "and" business—growth, innovation, and profitability—and are willing to navigate public market scrutiny for long-term alignment.
  3. The "So What?": Over the next 6-12 months, expect market volatility to create opportunities to invest in disciplined companies leveraging AI for fundamental operational shifts, rather than just hype.
See full notes
December 15, 2025

The Renaissance of the American Factory | a16z 2026 Big Ideas

a16z

AI
Key Takeaways:
  1. Strategic Implication: The next wave of industrial growth will come from applying manufacturing principles to large-scale infrastructure, not just consumer goods.
  2. Builder/Investor Note: Focus on companies that are standardizing designs and processes for physical assets, particularly those leveraging AI to navigate regulatory complexity and accelerate deployment.
  3. The "So What?": The rapid build-out of data centers is a live experiment for a broader industrial renaissance, providing a blueprint for how America can rebuild its capacity to build at scale over the next 6-12 months.
See full notes
December 16, 2025

⚡️Jailbreaking AGI: Pliny the Liberator & John V on Red Teaming, BT6, and the Future of AI Security

Latent Space

AI
Key Takeaways:
  1. Strategic Implication: The "AI safety" narrative is shifting from content moderation to systemic security. Focus on hardening the entire AI ecosystem, not just restricting model outputs.
  2. Builder/Investor Note: Be wary of "AI security" products that claim to "secure the model" through guardrails. These are likely security theater. Invest in full-stack AI security solutions, red teaming services, and platforms that facilitate open-source adversarial research.
  3. The "So What?": The future of AI security is not about building higher walls around models, but about understanding and hardening the entire ecosystem in which they operate. Open collaboration and adversarial testing are the fastest paths to robust AI.
See full notes

Crypto Podcasts

February 2, 2026

Gavin Zaentz & Pranav Ramesh: Leadpoet, Lead Generation, Intent-Driven Sales Automation | Ep. 79

Ventura Labs

Crypto
Key Takeaways:
  1. The shift from centralized, static data aggregation to decentralized, real-time, incentivized intelligence networks is fundamentally changing how data-intensive industries operate.
  2. Investigate subnet opportunities where incumbent data quality is low and validation is a core challenge.
  3. The future of sales is not just about more leads, but smarter, fresher, and more relevant ones.
See full notes
February 3, 2026

Gold Crashes, Bitcoin Slides, and the Fed Shock Markets

Unchained

Crypto
Key Takeaways:
  1. The Macro Shift: As trust erodes in traditional financial systems and geopolitical risks rise, capital is flowing towards more efficient, permissionless DeFi markets. This is forcing traditional finance to adapt or lose market share.
  2. The Tactical Edge: Evaluate DATs trading below NAV for potential M&A or activist plays, as these discounts often reflect management misalignment rather than fundamental asset weakness.
  3. The Bottom Line: The current market volatility, Fed policy shifts, and the rise of DeFi are not just noise; they are reshaping capital allocation. Investors and builders must understand these structural changes to position for the next cycle of institutional adoption.
See full notes
February 2, 2026

Metals Crash & Bitcoin Breaks $80k

1000x Podcast

Crypto
Key Takeaways:
  1. Global economic uncertainty and tariff threats are triggering a broad risk-off sentiment, creating dislocations where fundamentally strong assets are sold indiscriminately.
  2. Reallocate capital from speculative metals positions into Bitcoin at current levels and high-conviction, revenue-producing crypto platforms like Hyperliquid.
  3. The current market turbulence is separating the signal from the noise. Focus on assets with strong fundamentals and organic usage, as they are poised for significant gains once the broader market stabilizes.
See full notes
February 3, 2026

Is BTC A Buy, Metals Crash, Hyperliquid RWAs, New Fed Chair

1000x Podcast

Crypto
Key Takeaways:
  1. Global market indigestion is creating a flight to quality and a re-evaluation of speculative assets. This environment favors fundamentally strong assets and platforms with clear utility over pure FOMO plays.
  2. Consider tax-loss harvesting Bitcoin positions that are out of the money and reallocate to high-conviction, revenue-producing crypto assets like Hyperliquid.
  3. The "crypto portfolio" concept is evolving; focus on individual assets with strong organic usage and mega-trend tailwinds. This strategic shift will differentiate winners from losers in the coming market cycles.
See full notes
February 2, 2026

Why BitGo Went Public | Mike Belshe

Empire

Crypto
Key Takeaways:
  1. Regulatory clarity and institutional demand are converging, driving a fundamental re-architecture of financial market infrastructure. This shift will see traditional finance increasingly rely on regulated crypto-native service providers.
  2. Builders and investors should prioritize infrastructure providers that offer robust regulatory compliance and fiduciary protection, as these are the non-negotiable requirements for the next wave of institutional capital.
  3. The digital asset industry is poised for massive growth, driven by Wall Street's entry. Companies like BitGo, by building transparent, regulated infrastructure, are not just participating in this growth; they are actively shaping the future of finance, making now the time to understand these foundational shifts.
See full notes
February 2, 2026

Curated Credit: How Maple and Morpho Approach DeFi Lending | Sid Powell & Merlin Egalite

0xResearch

Crypto
Key Takeaways:
  1. Institutional capital is eyeing DeFi, pushing for tokenized real-world assets like private credit and bonds to diversify yield sources beyond crypto-backed loans. This requires robust risk isolation at the smart contract level and a new generation of independent risk assessors to bridge TradFi and DeFi.
  2. Prioritize protocols that offer explicit risk profiles and transparent fee structures, especially those building towards intent-based lending. For builders, focus on creating infrastructure that supports isolated risk and attracts independent rating agencies.
  3. The future of DeFi lending hinges on transparency and sophisticated risk management. As institutions enter, the demand for clear, independently verified risk assessments will intensify, making protocols that embrace these principles the winners in the next market cycle.
See full notes