10 Hours of Listening.
5 Minutes of Reading.

Deep dives into the conversations shaping the future of AI, Robotics & Crypto.

Save hours of your time each week with our podcast aggregator

🔍 Search & Filter
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

AI Podcasts

December 30, 2025

Your Brain Doesn't Command Your Body. It Predicts It. [Max Bennett]

Machine Learning Street Talk

AI
Key Takeaways:
  1. The macro pivot: The transition from static data training to interactive world models that perform active inference.
  2. The tactical edge: Prioritize AI architectures that incorporate continual learning and hypothesis testing rather than just scaling parameters.
  3. The next decade belongs to those who replicate the biological transition from observation to interactive simulation.
See full notes
December 31, 2025

The Algorithm That IS The Scientific Method [Dr. Jeff Beck]

Machine Learning Street Talk

AI
Key Takeaways:
  1. The Macro Transition: Move from Big Data mimicry to Small Data causal reasoning.
  2. The Tactical Edge: Prioritize Active Inference frameworks that track uncertainty.
  3. AGI won't come from bigger LLMs; it will come from agents that possess a physics-grounded world model.
See full notes
December 30, 2025

[State of AI Startups] Memory/Learning, RL Envs & DBT-Fivetran — Sarah Catanzaro, Amplify

Latent Space

AI
Key Takeaways:
  1. The transition from stateless chat interfaces to stateful, personalized agents that learn from every interaction.
  2. Prioritize memory. If you are building an application, treat state management and continual learning as your core technical moat to prevent user churn.
  3. Stop chasing clones of existing apps for reinforcement learning. Use real-world logs and traces to build models that solve actual engineering friction.
See full notes
December 30, 2025

[State of RL/Reasoning] IMO/IOI Gold, OpenAI o3/GPT-5, and Cursor Composer — Ashvin Nair, Cursor

Latent Space

AI
Key Takeaways:
  1. The transition from internet-scale imitation to environment-scale RL.
  2. Build products that capture the full context of a professional's workflow to make them RL-ready.
  3. Intelligence is no longer the bottleneck. The winner will be whoever builds the best hard drive for professional context.
See full notes
December 31, 2025

[State of Post-Training] From GPT-4.1 to 5.1: RLVR, Agent & Token Efficiency — Josh McGrath, OpenAI

Latent Space

AI
Key Takeaways:
  1. The Macro Pivot: Intelligence is moving from a scarce resource to a commodity where the primary differentiator is the cost per task rather than raw model size.
  2. The Tactical Edge: Prioritize building on models that demonstrate high token efficiency to ensure your agentic workflows remain profitable as complexity grows.
  3. The Bottom Line: The next year will be defined by the systems vs. models tension. Success belongs to those who can engineer the environment as effectively as the algorithm.
See full notes
December 31, 2025

[State of Evals] LMArena's $100M Vision — Anastasios Angelopoulos, LMArena

Latent Space

AI
Key Takeaways:
  1. The transition from static benchmarks to "Vibe-as-a-Service" means model labs must optimize for human delight rather than just loss curves.
  2. Use Arena’s open-source data releases to fine-tune models on real-world prompt distributions.
  3. In a world of synthetic data and benchmark saturation, human preference is the only remaining scarce resource for validating frontier capabilities.
See full notes
December 31, 2025

[State of Context Engineering] Agentic RAG, Context Rot, MCP, Subagents — Nina Lopatina, Contextual

Latent Space

AI
Key Takeaways:
  1. The transition from Model-Centric to Context-Centric AI. As base models commoditize, the value moves to the proprietary data retrieval and prompt optimization layers.
  2. Implement an instruction-following re-ranker. Use small models to filter retrieval results before they hit the main context window to maintain high precision.
  3. Context is the new moat. Your ability to coordinate sub-agents and manage context rot will determine your product's reliability over the next year.
See full notes
December 31, 2025

[NeurIPS Best Paper] 1000 Layer Networks for Self-Supervised RL — Kevin Wang et al, Princeton

Latent Space

AI
Key Takeaways:
  1. The convergence of RL and self-supervised learning. As the boundary between "learning to see" and "learning to act" blurs, the winning agents will be those that treat the world as a giant classification problem.
  2. Prioritize depth over width. When building action-oriented models, increase layer count while maintaining residual paths to maximize intelligence per parameter.
  3. The "Scaling Laws" have arrived for RL. Expect a new class of robotics and agents that learn from raw interaction data rather than human-crafted reward functions.
See full notes
December 31, 2025

[State of AI Papers 2025] Fixing Research with Social Signals, OCR & Implementation — Team AlphaXiv

Latent Space

AI
Key Takeaways:
  1. The Age of Scaling is hitting a wall, leading to a migration toward reasoning and recursive models like TRM that win on efficiency.
  2. Filter your research feed by implementation ease rather than just citation count to accelerate your development cycle.
  3. In a world of AI-generated paper slop, the ability to quickly spin up a sandbox and verify code is the only sustainable competitive advantage for AI labs.
See full notes

Crypto Podcasts

February 2, 2026

Gavin Zaentz & Pranav Ramesh: Leadpoet, Lead Generation, Intent-Driven Sales Automation | Ep. 79

Ventura Labs

Crypto
Key Takeaways:
  1. The shift from centralized, static data aggregation to decentralized, real-time, incentivized intelligence networks is fundamentally changing how data-intensive industries operate.
  2. Investigate subnet opportunities where incumbent data quality is low and validation is a core challenge.
  3. The future of sales is not just about more leads, but smarter, fresher, and more relevant ones.
See full notes
February 3, 2026

Gold Crashes, Bitcoin Slides, and the Fed Shock Markets

Unchained

Crypto
Key Takeaways:
  1. The Macro Shift: As trust erodes in traditional financial systems and geopolitical risks rise, capital is flowing towards more efficient, permissionless DeFi markets. This is forcing traditional finance to adapt or lose market share.
  2. The Tactical Edge: Evaluate DATs trading below NAV for potential M&A or activist plays, as these discounts often reflect management misalignment rather than fundamental asset weakness.
  3. The Bottom Line: The current market volatility, Fed policy shifts, and the rise of DeFi are not just noise; they are reshaping capital allocation. Investors and builders must understand these structural changes to position for the next cycle of institutional adoption.
See full notes
February 2, 2026

Metals Crash & Bitcoin Breaks $80k

1000x Podcast

Crypto
Key Takeaways:
  1. Global economic uncertainty and tariff threats are triggering a broad risk-off sentiment, creating dislocations where fundamentally strong assets are sold indiscriminately.
  2. Reallocate capital from speculative metals positions into Bitcoin at current levels and high-conviction, revenue-producing crypto platforms like Hyperliquid.
  3. The current market turbulence is separating the signal from the noise. Focus on assets with strong fundamentals and organic usage, as they are poised for significant gains once the broader market stabilizes.
See full notes
February 3, 2026

Is BTC A Buy, Metals Crash, Hyperliquid RWAs, New Fed Chair

1000x Podcast

Crypto
Key Takeaways:
  1. Global market indigestion is creating a flight to quality and a re-evaluation of speculative assets. This environment favors fundamentally strong assets and platforms with clear utility over pure FOMO plays.
  2. Consider tax-loss harvesting Bitcoin positions that are out of the money and reallocate to high-conviction, revenue-producing crypto assets like Hyperliquid.
  3. The "crypto portfolio" concept is evolving; focus on individual assets with strong organic usage and mega-trend tailwinds. This strategic shift will differentiate winners from losers in the coming market cycles.
See full notes
February 2, 2026

Why BitGo Went Public | Mike Belshe

Empire

Crypto
Key Takeaways:
  1. Regulatory clarity and institutional demand are converging, driving a fundamental re-architecture of financial market infrastructure. This shift will see traditional finance increasingly rely on regulated crypto-native service providers.
  2. Builders and investors should prioritize infrastructure providers that offer robust regulatory compliance and fiduciary protection, as these are the non-negotiable requirements for the next wave of institutional capital.
  3. The digital asset industry is poised for massive growth, driven by Wall Street's entry. Companies like BitGo, by building transparent, regulated infrastructure, are not just participating in this growth; they are actively shaping the future of finance, making now the time to understand these foundational shifts.
See full notes
February 2, 2026

Curated Credit: How Maple and Morpho Approach DeFi Lending | Sid Powell & Merlin Egalite

0xResearch

Crypto
Key Takeaways:
  1. Institutional capital is eyeing DeFi, pushing for tokenized real-world assets like private credit and bonds to diversify yield sources beyond crypto-backed loans. This requires robust risk isolation at the smart contract level and a new generation of independent risk assessors to bridge TradFi and DeFi.
  2. Prioritize protocols that offer explicit risk profiles and transparent fee structures, especially those building towards intent-based lending. For builders, focus on creating infrastructure that supports isolated risk and attracts independent rating agencies.
  3. The future of DeFi lending hinges on transparency and sophisticated risk management. As institutions enter, the demand for clear, independently verified risk assessments will intensify, making protocols that embrace these principles the winners in the next market cycle.
See full notes