The transition from Model-Centric to Context-Centric AI. As base models commoditize, the value moves to the proprietary data retrieval and prompt optimization layers.
Implement an instruction-following re-ranker. Use small models to filter retrieval results before they hit the main context window to maintain high precision.
Context is the new moat. Your ability to coordinate sub-agents and manage context rot will determine your product's reliability over the next year.
The convergence of RL and self-supervised learning. As the boundary between "learning to see" and "learning to act" blurs, the winning agents will be those that treat the world as a giant classification problem.
Prioritize depth over width. When building action-oriented models, increase layer count while maintaining residual paths to maximize intelligence per parameter.
The "Scaling Laws" have arrived for RL. Expect a new class of robotics and agents that learn from raw interaction data rather than human-crafted reward functions.
The Age of Scaling is hitting a wall, leading to a migration toward reasoning and recursive models like TRM that win on efficiency.
Filter your research feed by implementation ease rather than just citation count to accelerate your development cycle.
In a world of AI-generated paper slop, the ability to quickly spin up a sandbox and verify code is the only sustainable competitive advantage for AI labs.
The transition from Black Box to Glass Box AI. Trust is the next moat, and interpretability is the tool to build it.
Use feature probing for high-stakes monitoring. It is more effective and cheaper than using LLMs as judges for tasks like PII scrubbing.
Understanding model internals is no longer just a safety research project. It is a production requirement for any builder deploying AI in regulated or high-stakes environments over the next 12 months.
The transition from completion to agency means benchmarks are moving from static snapshots to active environments.
Integrate unsolvable test cases into internal evaluations to measure model honesty.
Success in AI coding depends on navigating the messy, interactive reality of production codebases rather than chasing high scores on memorized puzzles.
The transition from technology push to market pull requires builders to stop focusing on the stack and start obsessing over user psychology.
Apply the Mom Test by asking users about their current workflows instead of pitching your solution. This prevents building expensive features that nobody uses.
The next decade of AI will be won by those who understand the human condition as deeply as they understand the transformer architecture.
**Value is a Function of Time:** Bitcoin's greatest asset is its 15-year track record. Lasting value isn't about technology alone; it's about a powerful story that withstands the test of time, creating an insulated brand.
**Self-Custody is the Premise:** The entire value proposition of crypto hinges on eliminating counterparty risk. Compromising on self-custody and security for the sake of convenience is a recurring mistake that "always blows up."
**Adoption Will Be Abstracted:** The future of crypto for the masses is one where the complexity is hidden. Centralized user experiences will run on decentralized rails, delivering the benefits of crypto (lower fees, faster settlement) without the unforgiving user experience.
**Stop Gambling, Start Engineering.** The biggest edge isn’t in predicting price but in finding and exploiting structural market inefficiencies. Focus on trades where you can control or heavily influence the outcome, like RFV plays or creating self-fulfilling prophecies in prediction markets.
**Become the Casino.** The crypto market is filled with speculation. By providing liquidity, farming yields, and taking the other side of gamblers (e.g., selling Pendle PTs), you can generate consistent, lower-risk returns. Farmers, on average, outperform directional traders over the long term.
**Alpha Lives in the Weeds.** The most significant opportunities aren’t on the front page of Twitter. They’re buried in obscure Discord servers, complex protocol mechanics (like Aerodrome’s bribes), and emerging platforms with low capital efficiency like Polymarket.
Private Markets Are the New Public: The real unlock for tokenization isn't just 24/7 stock trading—it's bringing high-growth private companies to retail investors, with or without the company's blessing.
The Great Convergence Is Here: The line between a crypto exchange and a stock brokerage is disappearing. Robinhood and its competitors are converging on a single "financial super app" model where all assets live in one place.
Regulation Has Created a Paradox: The current system allows unlimited speculation on assets with zero fundamental value (memecoins) but blocks access to premier private equity. Robinhood is betting this logic won't hold.
Embrace the Friction: The current difficulty of investing in Bittensor subnets is a feature, not a bug. It’s the moat that has suppressed valuations, creating an opportunity akin to buying Bitcoin on Mt. Gox before Coinbase existed.
A 3-6 Month Catalyst Window: The development of bridges and institutional infrastructure is the primary catalyst. This window represents the final moments to gain exposure before capital can flow in easily, likely re-rating the entire ecosystem.
Think Startups, Not Just Tokens: Evaluate subnets like early-stage companies. Use resources like the *Revenue Search* podcast to analyze financials and projects like Shush (AI inference), Score (AI vision), and Quantum (public quantum computing) as real, venture-style bets.
**Don't Panic Sell.** The current market dip is a sign of a healthy "wall of worry," not a cycle top. Historical on-chain indicators show there is significant room to run.
**Follow the Smart Money.** Institutions are aggressively buying this dip. The real capital from pensions and sovereign wealth funds is still on the sidelines, waiting to enter.
**The Fed is Turning Bullish.** A key Federal Reserve official is now openly advocating for crypto adoption within the regulatory apparatus, signaling a major long-term shift in the US.
**The Dollar Isn't Being Debased; It's Deflationary.** The market is not pricing in inflation or debasement. Instead, key indicators like the interest rate swap market are emphatically signaling a future of much lower interest rates for much longer, which is characteristic of deflationary pressure and a strong dollar.
**Asset Booms Are a Symptom, Not a Solution.** Rising stock and crypto prices are not evidence of a healthy economy or money printing. They reflect a K-shaped recovery where capital flees into financial assets as a hedge against systemic fragility, while the real economy for labor remains stagnant.
**The Contrarian Play Is Long Bonds.** If the global system is starved for safe, liquid collateral and headed toward a deflationary recession, the best-performing assets will be long-duration U.S. Treasuries. Snyder’s advice is the polar opposite of the typical crypto portfolio: be long bonds.