The macro trend of autonomous AI agents is shifting compute demand beyond GPUs, creating an unexpected CPU crunch and forcing a re-evaluation of on-premise inference and cost-optimized model routing for security and efficiency.
Investigate hybrid compute strategies, combining secure local environments (Mac Minis, home servers) with cloud-based LLMs, and explore multi-model API gateways like OpenRouter to optimize agent costs and performance.
AI agents are here, demanding a rethink of your compute stack and security protocols. Prepare for a future where CPU capacity, not just GPU, becomes a critical bottleneck, and strategic cost management for diverse AI models is non-negotiable for competitive advantage.
The move from general-purpose LLMs to specialized AI agents demands a new data architecture that captures the *why* of decisions, not just the *what*. This creates a new, defensible layer of institutional memory, moving value from raw model IP to proprietary decision intelligence.
Invest in or build agentic systems that are in the *orchestration path* of specific business processes. This allows for the organic capture of decision traces, forming a proprietary context graph that incumbents cannot easily replicate.
Over the next 12 months, the ability to build and extract value from context graphs will define the winners in the enterprise AI space, creating a new "context graph stack" that will be 10x more valuable than the modern data stack.
AI's progress has transitioned from a linear, bottleneck-driven model to a multi-layered, interconnected explosion of advancements. This makes traditional long-term forecasting obsolete.
Prioritize building and investing in adaptable systems and teams that can rapidly respond to emergent opportunities across diverse AI layers. Focus on robust interfaces and composability rather than betting on a single "next frontier."
The next 6-12 months will test our ability to operate in an environment where the future is increasingly opaque. Success will come from embracing this unpredictability, focusing on present opportunities, and building for resilience against an unknowable future.
The Macro Shift: Unprecedented fiscal and monetary stimulus, combined with an AI-driven capital investment super cycle, creates a "sweet spot" for financial assets and growth technology. This favors institutions with scale and adaptability.
The Tactical Edge: Prioritize investments in companies with proprietary data and significant GPU access, as these are new competitive moats in the AI era. For founders, secure capital to compete against well-funded incumbents.
The Bottom Line: Scale and strategic capital deployment are paramount. Whether a financial giant or tech insurgent, the ability to grow, adapt to AI's new rules, and handle regulatory currents will determine relevance and success.
The AI industry is consolidating around players with deep, proprietary data and infrastructure, transforming general LLMs into personalized, transactional agents. This means value accrues to those who can not only build powerful models but also distribute them at scale and integrate them into daily life.
Investigate companies building on top of Google's AI ecosystem or those creating niche applications that use personalized AI. Focus on solutions that move beyond simple chatbots to actual task execution and intent capture.
Google's strategic moves, particularly with Apple and in e-commerce, signal a future where AI is deeply embedded in every digital interaction. Understanding this shift is crucial for identifying where value will be created and captured.
The AI industry is pivoting from a singular AGI pursuit to a multi-pronged approach, where specialized models, advanced post-training, and geopolitical open-source competition redefine competitive advantage and talent acquisition.
Invest in infrastructure and expertise for advanced post-training techniques like RLVR and inference-time scaling, as these are the primary drivers of capability gains and cost efficiency in current LLM deployments.
The next 6-12 months will see continued rapid iteration in AI, driven by compute scale and algorithmic refinement rather than architectural overhauls. Builders and investors should focus on specialized applications, human-in-the-loop systems, and the strategic implications of open-weight models to capture value in this evolving landscape.
The open-source AI movement is democratizing access to powerful models, but this decentralization shifts the burden of safety and robust environmental adaptation from central labs to individual builders.
Prioritize investing in or building tools that provide robust, scalable evaluation and alignment frameworks for open-weight models.
The next 6-12 months will see a race to solve environmental adaptability and human alignment in open-weight agentic AI. Success here will define the practical utility and safety of the next generation of AI applications.
**Consolidate or Compete.** Sub-subnets allow teams to build diversified businesses under a single token, while deregistration means underperforming projects will be pruned. The message is clear: innovate and perform, or be replaced.
**Investment Thesis Evolves.** Subnet tokens are no longer "eternal." Deregistration fundamentally changes the risk profile, making active development and market traction paramount for long-term viability.
**Governance is Coming.** The network is on a clear path to decentralization. The planned shift to Proof-of-Stake and a more democratic governance structure will steadily transfer power to subnet owners and stakers, making community participation more critical than ever.
Global liquidity is the ultimate macro signal. As long as the global liquidity chart goes up and to the right, the crypto bull market has the fuel it needs to continue its run.
Ethereum isn't losing; it's quietly winning the RWA war. With 93% market share, Ethereum has become the de facto settlement layer for tokenized real-world assets, a lead that continues to grow as institutions like Fidelity build directly on its L1.
The new blockchain business model is asset management. Chains like Hyperliquid and Mega ETH are pioneering a shift away from relying solely on blockspace fees. By integrating native stablecoins, they are capturing a percentage of the yield from assets on-chain, effectively turning the protocol itself into a revenue-generating asset manager.
LSTs Are a Distribution Play: For protocols, launching an LST is less about staking yield and more about attracting SOL to gain a strategic advantage in securing blockspace and landing transactions.
Infrastructure Follows the User: Sanctum's pivot to transaction services was not a top-down mandate but a direct response to the needs of its largest partners, proving that the most durable infrastructure is built by solving the immediate, pressing problems of your customers.
Aggregation Is King: Just as Jupiter won by aggregating DEXs for users, Sanctum’s Gateway aims to win by aggregating fragmented transaction delivery networks for developers, creating a simpler and more efficient experience.
Patience is Your Superpower. This cycle rewards thesis-driven investing over hyperactive trading. Identify assets with strong value, momentum, and fundamentals, and give them time to play out.
Bet on the On-Chain Casino. The gambling economy is real, profitable, and growing. Look for platforms that facilitate high-asymmetry games (memecoins, raffles) as they capture a powerful cultural trend.
Find Alpha in the Illiquid. The next frontier is tokenizing real-world value. Platforms creating liquid markets for previously stuck assets—from collectibles to crime—are building foundational infrastructure for a much larger on-chain world.
Revenue Accrual is King. Hyperliquid's model of directing nearly all top-line revenue to token buybacks creates an aggressive and constant bid for the HYPE token, a feature most crypto projects can only dream of.
Product-First Beats VC-First. Its explosive growth comes from building a superior product that attracted a loyal user base first, then leveraging that traction to build an L1 ecosystem—a stark contrast to the typical VC-funded playbook.
A Bet on the Middle Ground. Investing in HYPE is a bet that CEX-level performance and on-chain transparency can outweigh significant centralization and regulatory risks. It’s a category-defining play that sits squarely between DeFi and CeFi.
Hyperliquid is a Cash Flow Machine. It is a rare crypto asset with quantifiable fundamentals, generating over $1B in annualized free cash flow with an automated, daily 99% buyback mechanism.
Access is the Arbitrage. The NASDAQ-listed vehicle’s core value proposition is providing regulated access to an asset that US investors cannot easily buy, creating a structural opportunity.
Innovation is Now Permissionless. Hyperliquid’s open architecture allows anyone to build on its rails, enabling new markets like pre-IPO equity trading and accelerating growth without traditional gatekeepers.