10 Hours of Listening.
5 Minutes of Reading.

Deep dives into the conversations shaping the future of AI, Robotics & Crypto.

Save hours of your time each week with our podcast aggregator

🔍 Search & Filter
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

AI Podcasts

December 31, 2025

[State of Evals] LMArena's $100M Vision — Anastasios Angelopoulos, LMArena

Latent Space

AI
Key Takeaways:
  1. The Macro Trend: The transition from static benchmarks to live human-in-the-loop evaluation. As models saturate fixed tests, the only remaining signal is subjective human preference at scale.
  2. The Tactical Edge: Monitor secret model drops on Arena to spot frontier capabilities before official releases. This provides a lead time advantage for builders choosing their tech stack.
  3. The Bottom Line: Arena is the new kingmaker. If you are building AI products, their expert-tier data is the most reliable map for navigating the frontier.
See full notes
December 31, 2025

[State of Context Engineering] Agentic RAG, Context Rot, MCP, Subagents — Nina Lopatina, Contextual

Latent Space

AI
Key Takeaways:
  1. The move from small models to medium models (15B to 70B) suggests that reasoning capability is outstripping the desire for low-latency edge deployment.
  2. Implement instruction-following re-rankers to prune your context window. This prevents the model from getting confused by irrelevant data.
  3. Stop building toys. The next year belongs to those who can build full agentic systems that handle billions of tokens without losing the plot.
See full notes
December 31, 2025

[NeurIPS Best Paper] 1000 Layer Networks for Self-Supervised RL — Kevin Wang et al, Princeton

Latent Space

AI
Key Takeaways:
  1. The wall between RL and self-supervised learning is crumbling, leading to a unified "representation-first" approach to AI.
  2. Swap your reward-heavy objectives for contrastive representation learning to access deeper, more stable architectures.
  3. If you aren't planning for RL models with 100x the current depth, you're building for the past.
See full notes
December 31, 2025

[State of AI Papers 2025] Fixing Research with Social Signals, OCR & Implementation — Team AlphaXiv

Latent Space

AI
Key Takeaways:
  1. Academic research is transitioning from a "publish or perish" PDF culture to an "implement or ignore" code culture.
  2. Use AlphaXiv to filter research by social signal and implementation ease rather than just keyword relevance.
  3. The PDF is an antiquated artifact. In 2025, the value of a paper is measured by the speed at which a developer can spin up its Docker container.
See full notes
December 31, 2025

[State of MechInterp] SAEs in Production, Circuit Tracing, AI4Science, "Pragmatic" Interp — Goodfire

Latent Space

AI
Key Takeaways:
  1. The Macro Trend: The transition from black box scaling to transparent steering. As models enter regulated industries, the ability to prove why a model made a decision becomes more valuable than the decision itself.
  2. The Tactical Edge: Deploy sidecar models for monitoring. Instead of using expensive LLM-as-a-judge prompts, probe specific internal features to catch hallucinations at the activation level.
  3. The Bottom Line: The next year belongs to the pragmatic researchers. If you cannot explain your model's reasoning, you will not be allowed to deploy it in high-stakes environments.
See full notes
December 31, 2025

[State of Code Evals] After SWE-bench, Code Clash & SOTA Coding Benchmarks recap — John Yang

Latent Space

AI
Key Takeaways:
  1. The transition from completion to agency requires moving from static repos to active, economically valuable environments.
  2. Prioritize agentic workflows that emphasize codebase understanding over simple code generation.
  3. The next 12 months will see a move from stunt autonomy to integrated human-AI systems that handle long-running tasks without losing the human intent.
See full notes
December 31, 2025

[State of Research Funding] Beyond NSF, Slingshots, Open Frontiers — Andy Konwinski, Laude Institute

Latent Space

AI
Key Takeaways:
  1. The transition from monolithic models to compound systems means the value is migrating to the orchestration and context layer.
  2. Prioritize tools like DSPy and context management frameworks to build high-leverage applications that do not depend on proprietary model updates.
  3. Open research is the only way to maintain a competitive edge. If the US stops publishing, it stops leading.
See full notes
December 31, 2025

Infinity, Paradoxes, Gödel Incompleteness & the Mathematical Multiverse | Lex Fridman Podcast #488

Lex Fridman

AI
Key Takeaways:
  1. From Singular Logic to Pluralistic Systems. As we build complex AI, we must move from seeking one "correct" model to managing a multiverse of conflicting but internally consistent logical frameworks.
  2. Audit for Incompleteness. When designing protocols, identify the "independent" variables that your system cannot prove or settle internally.
  3. Truth is bigger than code. Over the next year, the winners will be those who stop trying to "solve" the universe and start navigating the multiverse of possible truths.
See full notes
December 31, 2025

AI in 2026: 3 Predictions For What’s To Come (a16z Big Ideas)

a16z

AI
Key Takeaways:
  1. Outcome-Based Intelligence. We are moving from AI as a Service to AI as an Outcome where value is tied to results rather than usage.
  2. Target Non-Public Data. Build applications in sectors like law or lending where the most valuable data is private and un-crawlable.
  3. The next two years will separate companies that use AI to save pennies from those that use AI to capture entire markets through autonomous systems and proprietary data loops.
See full notes

Crypto Podcasts

February 5, 2026

Alchemy CEO: Why AI Agents Need Crypto More Than Humans Do with Nikhil Viswanathan

The Rollup

Crypto
Key Takeaways:
  1. The convergence of AI and crypto is not just a technological trend; it's a foundational shift towards a digital society where AI agents are first-class economic citizens.
  2. Build agent-native financial primitives. Focus on creating protocols and services that allow AI agents to autonomously transact, manage assets, and interact with digital property without human intervention.
  3. The question isn't if digital currency and AI agents will dominate, but when and how.
See full notes
February 4, 2026

The Robot Revolution Is Here: Warehouse Automation, Humanoids, and What Comes Next

The People's AI

Crypto
Key Takeaways:
  1. The AI-driven automation is not a sudden, generalist humanoid takeover, but a gradual, specialized deployment.
  2. Invest in or build solutions for industrial automation, logistics, and specialized service robotics (e.g., medical, waste management).
  3. The next 5-10 years will see significant, quiet growth in non-humanoid, task-specific robots transforming supply chains, manufacturing, and healthcare.
See full notes
February 4, 2026

The Dogecoin Community Might Sh**t me for Saying This...

The DCo Podcast

Crypto
Key Takeaways:
  1. The ongoing global distrust in centralized financial systems fuels a search for decentralized alternatives, yet the crypto market's focus on "store of value" assets like Bitcoin risks missing the original intent of a truly global, fair means of exchange, a gap Dogecoin aims to fill.
  2. Re-evaluate digital asset utility beyond speculative store-of-value narratives, considering projects actively pursuing frictionless, low-cost means of exchange.
  3. The long-term viability of decentralized finance hinges on its ability to deliver practical, everyday utility, not just investment returns. This means projects focused on transactional efficiency could gain significant ground in the coming 6-12 months.
See full notes
February 4, 2026

Quadrillions: Stablecoins: We’ve Only Just Begun | Mohamed Afifi

Empire

Crypto
Key Takeaways:
  1. Build infrastructure that simplifies blockchain complexity and stablecoin fragmentation for end-users and enterprises. This is where the next wave of value creation lies.
  2. The global financial system's slowness and cost are directly challenged by programmable stablecoins, moving them from speculative assets to essential, low-cost, high-speed infrastructure.
  3. Stablecoins are moving from a crypto-native tool to a core layer for global finance.
See full notes
February 3, 2026

Haonan Li on How Codex is Taking Over The $7 Trillion FX Market

The Rollup

Crypto
Key Takeaways:
  1. As global economies grapple with inflation and inefficient financial systems, capital seeks refuge and utility in digital assets. Onchain FX provides a direct, cost-effective escape route, bypassing legacy intermediaries and offering a superior alternative for cross-border value transfer.
  2. Builders should focus on creating core financial primitives like onchain FX that solve real-world problems with superior economics, rather than chasing speculative narratives or token-driven vanity metrics.
  3. The next 6-12 months will see a continued acceleration of capital into crypto-native financial rails, particularly in emerging markets. Investors and builders should position themselves to capitalize on the structural cost advantages and network effects of onchain FX, which is poised to become a default market for many currency pairs.
See full notes
February 4, 2026

Stablecoins Hit $10T Monthly Volume, MetaMask Launches Tokenized Stocks & Galaxy Posts $482M Loss.

The Rollup

Crypto
Key Takeaways:
  1. The "Neo Finance" paradigm is solidifying, blending TradFi assets with DeFi's capital efficiency and transparency. This shift is not just about crypto, but about the future of all finance, with AI agents as a new class of economic actors.
  2. Invest in infrastructure and applications that bridge TradFi and DeFi, focusing on tokenized real-world assets and secure, high-yield stablecoin products. Prioritize platforms offering transparent, risk-managed yield, as institutional capital will flow there.
  3. The market's current volatility masks a profound structural transformation. Builders and investors who focus on creating seamless, capital-efficient, and AI-native financial products will capture the next wave of value, as digital assets become the default for both humans and machines.
See full notes