10 Hours of Listening.
5 Minutes of Reading.

Deep dives into the conversations shaping the future of AI, Robotics & Crypto.

Save hours of your time each week with our podcast aggregator

🔍 Search & Filter
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

AI Podcasts

December 26, 2025

How Claude Code Works - Jared Zoneraich, PromptLayer

AI Engineer

AI
Key Takeaways:
  1. The transition from Prompt Engineering to Context Engineering where the goal is keeping the model's workspace small and relevant.
  2. Replace your complex classification prompts with a single Bash tool. Let the agent write its own Python scripts to handle data transformations.
  3. The winners in the agent space will not be those with the most complex logic. They will be the ones who build the best tools for the model to use.
See full notes
December 26, 2025

Shipping AI That Works: An Evaluation Framework for PMs – Aman Khan, Arize

AI Engineer

AI
Key Takeaways:
  1. The Macro Shift: From Model-Centric to Eval-Centric. The value is moving from the LLM itself to the proprietary evaluation loops that keep the LLM on the rails.
  2. The Tactical Edge: Export production traces and build a "Golden Set" of 50 hard examples. Use these to run A/B tests on every prompt change before hitting production.
  3. The Bottom Line: Reliability is the product. If you cannot measure how your agent fails, you haven't built a product; you've built a demo.
See full notes
December 26, 2025

How AI Will Reshape The Economy In 2026 (a16z Big Ideas)

a16z

AI
Key Takeaways:
  1. The transition from passive data storage to active agentic execution across both financial and industrial sectors.
  2. Target unsexy legacy industries like mortgage servicing or rare earth processing where the margin for improvement is highest.
  3. 2026 marks the year where software eating the world moves from the screen to the physical supply chain and the autonomous agent.
See full notes
December 26, 2025

⚡️GPT5-Codex-Max: Training Agents with Personality, Tools & Trust — Brian Fioca + Bill Chen, OpenAI

Latent Space

AI
Key Takeaways:
  1. The transition from chatbots with tools to agents that build tools marks the end of the manual integration era.
  2. Stop building custom model scaffolding and start building on top of opinionated agent layers like the Codex SDK.
  3. In 12 months, the distinction between a coding agent and a general computer user will vanish as the terminal becomes the primary interface for all digital labor.
See full notes
December 26, 2025

Steve Yegge's Vibe Coding Manifesto: Why Claude Code Isn't It & What Comes After the IDE

Latent Space

AI
Key Takeaways:
  1. Software is moving from a scarce resource produced by humans to a commodity generated by agentic swarms.
  2. Move beyond simple chat interfaces and start experimenting with agentic loops plus MCP servers to automate entire workflows.
  3. The AI Engineer is the new F1 driver of tech. Mastery of the tool belt matters more than the ability to build the car from scratch.
See full notes
December 24, 2025

METR's Benchmarks vs Economics: The AI capability measurement gap – Joel Becker, METR

AI Engineer

AI
Key Takeaways:
  1. The Capability-Utility Gap is widening. We see a divergence where models get smarter but the friction of human-AI collaboration keeps productivity flat.
  2. Deploy AI for mid-level engineers or low-context tasks. Avoid forcing AI workflows on your top seniors working in complex legacy systems.
  3. The next year will focus on reliability over raw intelligence. The winners will have models that require the least amount of human babysitting.
See full notes
December 24, 2025

PhD Bodybuilder Predicts The Future of AI (97% Certain) [Dr. Mike Israetel]

Machine Learning Street Talk

AI
Key Takeaways:
  1. The Macro Shift: Scaling laws are hitting a diminishing return on raw data but a massive acceleration in reasoning. The shift from statistical matching to reasoning agents happens when models can recursively check their own logic.
  2. The Tactical Edge: Build for the agentic future by prioritizing high-context data pipelines. Models perform better when you provide massive context rather than relying on zero-shot inference.
  3. The Bottom Line: We are 24 months away from AI that makes unassisted human thought look like navigating London without a map. Prepare for a world where the most valuable skill is directing machine agency rather than performing manual logic.
See full notes
December 23, 2025

Continual System Prompt Learning for Code Agents – Aparna Dhinakaran, Arize

AI Engineer

AI
Key Takeaways:
  1. The transition from model-centric to loop-centric development. Performance is now a function of the feedback cycle rather than just the weights of the frontier model.
  2. Implement an LLM-as-a-judge step that outputs a "Reason for Failure" field. Feed this string directly into a meta-prompt to update your agent's system instructions automatically.
  3. Static prompts are technical debt. Teams that build automated systems to iterate on their agent's instructions will outpace those waiting for the next model training run.
See full notes
December 23, 2025

Developer Experience in the Age of AI Coding Agents – Max Kanat-Alexander, Capital One

AI Engineer

AI
Key Takeaways:
  1. The Macro Shift: The transition from writing to reviewing as the primary engineering activity. As agents generate more code, the human role moves from creator to editor.
  2. The Tactical Edge: Build CLIs for every internal tool to give agents a native text interface. This increases accuracy and speed compared to visual automation.
  3. The Bottom Line: Developer experience is the infrastructure for AI. Investing in clean code and fast feedback loops is the only way to ensure AI productivity gains do not decay over the next 12 months.
See full notes

Crypto Podcasts

November 20, 2025

Hivemind: Can Crypto Bounce, Monad's ICO & The Perp Opportunity

Empire

Crypto
Key Takeaways:
  1. Capital Efficiency Is King. In the perps world, platforms offering unified margin will win. Aggregators that fragment capital are a structural disadvantage, making trading terminals the more logical endgame.
  2. Onboard Hobbies, Not Traders. Crypto’s growth depends on moving beyond unsustainable, zero-sum trading narratives. The next million users will be onboarded through "hobbyified" social and entertainment apps, not another DEX.
  3. Cash Now, Builders Later. In this environment, cash is king. Use this quiet period to identify teams grinding through the bear market, especially those with performance-locked incentives like MetaDAO projects. They are the asymmetric bets of the next cycle.
See full notes
November 20, 2025

The Future of Institutional Crypto (What Banks Actually Need)

The DCo Podcast

Crypto
Key Takeaways:
  1. **Solve the Privacy Bug.** Institutions will not move sensitive operations onto fully transparent ledgers. The future is permissioned visibility, where regulators and involved parties can see data, but the public cannot.
  2. **Composability is the Killer App.** The true unlock for on-chain finance is the ability to atomically combine different assets and workflows without operational risk. Fragmented L2s endanger this core value proposition.
  3. **The Next Wave is Capital Markets Infrastructure.** The long-term moat for any network targeting institutional finance is not just its tech, but its ecosystem of interconnected banks, funds, and market makers operating in a compliant, private environment.
See full notes
November 19, 2025

Why Cross-Border Flows Matter More Than Rate Cuts | Capital Flows

Forward Guidance

Crypto
Key Takeaways:
  1. Stop Obsessing Over the Fed. The dominant force driving market liquidity is the geopolitical rivalry between the U.S. and China, which dictates massive cross-border capital flows and underpins U.S. asset valuations.
  2. This Is a Repricing, Not a Recession. The current market drawdown is a healthy positioning unwind, not a crisis. The lack of a fear bid in long-term bonds signals this is an opportunity to buy the dip in a structural bull market.
  3. Bitcoin Failed the Safe-Haven Test. Gold remains the premier asset for hedging geopolitical risk. Bitcoin has demonstrated it is a high-beta risk asset, with its recent rally driven more by speculative corporate treasury activity than a fundamental macro role.
See full notes
November 18, 2025

How Pudgy Penguins Could Become a $1,000,000,000 Brand

The DCo Podcast

Crypto
Key Takeaways:
  1. Value is Decoupling from EBITDA. A brand's true worth is increasingly measured by its cultural impact, not just its revenue. Tokenization provides the mechanism to price and trade this cultural capital.
  2. Memecoins are a Feature, Not a Bug. They are the earliest, purest form of tokenized culture, proving that a financial layer can supercharge a community's growth and alignment.
  3. Invest in Cultural Arbitrage. The biggest opportunities are in projects and brands whose cultural influence dramatically outweighs their current financial metrics. This gap between impact and income is where tokenization creates exponential value.
See full notes
November 17, 2025

The Hidden Flaw in Blockchain Design (Dune Analytics)

The DCo Podcast

Crypto
Key Takeaways:
  1. Transparency Is the Best Moderator. Instead of policing content, Dune makes the underlying source code for every analysis public, empowering the community to self-regulate and verify data quality.
  2. Build With the Ethos of the Ecosystem. Dune succeeded by embracing crypto's open-source nature, creating a collaborative platform that felt native to the space, unlike closed-source competitors.
  3. Incentives Don't Have to Be Financial. Reputation, influence, and the ability to contribute to a shared body of knowledge are powerful motivators for community participation in open platforms.
See full notes
November 18, 2025

Bitcoin Breaks $95k, Crypto’s Valuation Problem, & The Path To Real On-Chain Users

Empire

Crypto
Key Takeaways:
  1. **Short Everything But Bitcoin.** The vast majority of crypto assets trade at unjustifiable multiples based on cyclical, speculative revenue. Bitcoin, as a "digital gold" macro hedge, is the only asset with a durable investment thesis that stands apart from the overvalued tech plays.
  2. **The L1 Thesis is Dead.** Investing in L1s is a bet on obsolete infrastructure. Future returns will be captured by killer applications that build real businesses and bring non-speculative users on-chain, not by the commoditized blockspace they run on.
  3. **Acquire Users, Don't Wait For Them.** Crypto's central problem is its failure to grow its user base. The winning strategy is to buy existing businesses with real customers and integrate blockchain technology, thereby acquiring distribution rather than trying to build it from scratch in a hyper-competitive market.
See full notes