10 Hours of Listening.
5 Minutes of Reading.

Deep dives into the conversations shaping the future of AI, Robotics & Crypto.

Save hours of your time each week with our podcast aggregator

🔍 Search & Filter
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

AI Podcasts

January 30, 2026

JetBrains + Weights & Biases: Establishing frameworks and best practices for enterprise AI agents

Weights & Biases

AI
Key Takeaways:
  1. The rapid expansion of AI agents from research labs to enterprise production demands a corresponding maturation of development and operational tooling. This mirrors the evolution of traditional software engineering, where observability became non-negotiable for complex systems.
  2. Implement robust observability and evaluation frameworks from day one for any AI agent project. This prevents costly debugging cycles and ensures core algorithms function as intended, directly impacting performance and resource efficiency.
  3. Reliable AI agent development hinges on transparent monitoring and evaluation. Prioritizing these capabilities now will determine which organizations can successfully deploy and scale their AI initiatives over the next 6-12 months.
See full notes
January 31, 2026

State of AI in 2026: LLMs, Coding, Scaling Laws, China, Agents, GPUs, AGI | Lex Fridman Podcast #490

Lex Fridman

AI
Key Takeaways:
  1. The Macro Shift: Global AI pivots from raw model size to sophisticated post-training and efficient inference. China's open-weight models force a US strategy re-evaluation.
  2. The Tactical Edge: Invest in infrastructure and talent for RLVR and inference-time scaling. These frontiers enable new model capabilities and economic value.
  3. The Bottom Line: AI's relentless progress amplifies human capabilities. Focus on systems augmenting human expertise and navigating ethical complexities. Real value lies in intelligent collaboration.
See full notes
January 31, 2026

Inside a Chinese AI Lab: How MiniMax Builds Open Models

Turing Post

AI
Key Takeaways:
  1. Open-source AI is moving from theoretical research to production-grade agentic systems.
  2. Prioritize deep engineering talent and first-principles problem-solving over chasing algorithmic novelties.
  3. The next 6-12 months will separate the AI builders who can truly operationalize advanced models from those who can't.
See full notes
January 30, 2026

Anthropic’s Rise: Is OpenAI Losing Its Lead? w/ Patrick & Duncan

Milk Road AI

AI
Key Takeaways:
  1. Trillion-dollar AI compute investments create market divergence: immediate monetization (Meta) is rewarded, while slower conversion (Microsoft) faces skepticism, as geopolitical tensions rise over open-source model parity.
  2. Prioritize AI models balancing raw intelligence with superior user experience and collaborative features, as developer loyalty and enterprise adoption increasingly hinge on usability.
  3. The AI landscape is rapidly reordering. Investors and builders must assess monetization pathways, geopolitical implications, and AI's social contract over the next 6-12 months.
See full notes
January 29, 2026

AI math capabilities could be jagged for a long time – Daniel Litt

Epoch AI

AI
Key Takeaways:
  1. The collapse of trial costs turns scientific discovery into a search problem.
  2. Prioritize verifiable problems where AI can provide a clear reward signal.
  3. AI will solve mildly interesting problems soon, but the Big Ideas still require human marination.
See full notes
January 25, 2026

If You Can't See Inside, How Do You Know It's THINKING? [Dr. Jeff Beck]

Machine Learning Street Talk

AI
Key Takeaways:
  1. The Macro Trend: The transition from opaque scaling to verifiable reasoning.
  2. The Tactical Edge: Audit your models for brittleness by testing them on edge cases that require first principles logic rather than historical data.
  3. The Bottom Line: The next winners in AI will not have the biggest models but the most verifiable ones. If you cannot prove how a model reached a conclusion, you cannot trust it in production.
See full notes
January 23, 2026

Abstraction & Idealization: AI's Plato Problem [Mazviita Chirimuuta]

Machine Learning Street Talk

AI
Key Takeaways:
  1. Transition from "Spectator Knowledge" (passive data absorption) to "Interactive Knowledge" (agentic engagement).
  2. Prioritize "embodied" AI architectures that integrate sensory feedback loops.
  3. AGI will not be solved by better math alone. It requires accounting for the physical and biological constraints that define intelligence.
See full notes
January 23, 2026

Captaining IMO Gold, Deep Think, On-Policy RL, Feeling the AGI in Singapore — Yi Tay 2

Latent Space

AI
Key Takeaways:
  1. The transition from more data to better thinking via inference-time compute. Reasoning is becoming a post-training capability rather than a pre-training byproduct.
  2. Use AI for anti-gravity coding to automate bug fixes and data visualization. Treat the model as a passive aura that buffs the productivity of every senior engineer.
  3. AGI will not be a collection of narrow tools but a single model that reasons its way through any domain. The gap between closed labs and open source is widening as these reasoning tricks compound.
See full notes
January 21, 2026

"We Made a Dream Machine That Runs on Your Gaming PC"

Machine Learning Street Talk

AI
Key Takeaways:
  1. The transition from static LLMs to interactive world models marks the move from AI as a tool to AI as a persistent environment.
  2. Monitor the Hugging Face release of the 2B model to build custom image-to-experience wrappers for niche training or spatial entertainment.
  3. Local world models will become the primary interface for spatial computing within the next year, making high-end local compute more valuable than cloud-based streaming.
See full notes

Crypto Podcasts

February 5, 2026

Hivemind: Are L1s Still Overvalued, Hyperliquid’s End Game & State of The Market

Empire

Crypto
Key Takeaways:
  1. AI-driven efficiency gains are forcing a repricing across traditional software, directly exposing the overvaluation of crypto L1s that lack clear, revenue-generating utility.
  2. Prioritize protocols demonstrating consistent product shipping and clear revenue generation over speculative L1s.
  3. The crypto market is maturing, demanding real business models and product execution.
See full notes
February 5, 2026

Novelty Search Feb 5, 2026

taostats

Crypto
Key Takeaways:
  1. The demand for open-source, secure, and general-purpose AI inference is accelerating, pushing decentralized networks like BitTensor from experimental proofs to critical infrastructure.
  2. Investigate BitTensor's subnet ecosystem for opportunities to build applications that leverage its secure, open-source compute, particularly in high-demand niches like AI-assisted coding or interactive content generation.
  3. BitTensor's shift from free compute to a revenue-generating, self-sustaining flywheel signals a maturing decentralized AI market.
See full notes
February 5, 2026

AI on Ethereum: ERC-8004, x402, OpenClaw and the Botconomy

Bankless

Crypto
Key Takeaways:
  1. Autonomous agents will drive the next wave of internet GDP.
  2. Builders should create AI-native tooling and services leveraging ERC-8004 for agent identity/reputation, and X402 for fluid payments.
  3. Investors and builders must recognize that AI agents will soon be dominant users and creators of value onchain.
See full notes
February 5, 2026

Crypto Stress Test: Fees, Volatility, and Chain Performance

Lightspeed

Crypto
Key Takeaways:
  1. Evaluate L1s and app-specific protocols not just on throughput, but on their explicit value capture mechanisms.
  2. Prioritize protocols that directly align user activity and protocol revenue with token value, as seen in Hyperliquid's buyback model, over those with less direct or diluted value accrual to the native asset.
  3. Chains that can maintain low, stable fees during peak demand and clearly articulate how their native token captures value from growing on-chain activity will attract both users and capital.
See full notes
February 5, 2026

Alchemy CEO: Why AI Agents Need Crypto More Than Humans Do with Nikhil Viswanathan

The Rollup

Crypto
Key Takeaways:
  1. The convergence of AI and crypto is not just a technological trend; it's a foundational shift towards a digital society where AI agents are first-class economic citizens.
  2. Build agent-native financial primitives. Focus on creating protocols and services that allow AI agents to autonomously transact, manage assets, and interact with digital property without human intervention.
  3. The question isn't if digital currency and AI agents will dominate, but when and how.
See full notes
February 4, 2026

The Robot Revolution Is Here: Warehouse Automation, Humanoids, and What Comes Next

The People's AI

Crypto
Key Takeaways:
  1. The AI-driven automation is not a sudden, generalist humanoid takeover, but a gradual, specialized deployment.
  2. Invest in or build solutions for industrial automation, logistics, and specialized service robotics (e.g., medical, waste management).
  3. The next 5-10 years will see significant, quiet growth in non-humanoid, task-specific robots transforming supply chains, manufacturing, and healthcare.
See full notes