10 Hours of Listening.
5 Minutes of Reading.

Deep dives into the conversations shaping the future of AI, Robotics & Crypto.

Save hours of your time each week with our podcast aggregator

🔍 Search & Filter
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

AI Podcasts

December 26, 2025

⚡️GPT5-Codex-Max: Training Agents with Personality, Tools & Trust — Brian Fioca + Bill Chen, OpenAI

Latent Space

AI
Key Takeaways:
  1. The transition from chatbots with tools to agents that build tools marks the end of the manual integration era.
  2. Stop building custom model scaffolding and start building on top of opinionated agent layers like the Codex SDK.
  3. In 12 months, the distinction between a coding agent and a general computer user will vanish as the terminal becomes the primary interface for all digital labor.
See full notes
December 26, 2025

Steve Yegge's Vibe Coding Manifesto: Why Claude Code Isn't It & What Comes After the IDE

Latent Space

AI
Key Takeaways:
  1. Software is moving from a scarce resource produced by humans to a commodity generated by agentic swarms.
  2. Move beyond simple chat interfaces and start experimenting with agentic loops plus MCP servers to automate entire workflows.
  3. The AI Engineer is the new F1 driver of tech. Mastery of the tool belt matters more than the ability to build the car from scratch.
See full notes
December 24, 2025

METR's Benchmarks vs Economics: The AI capability measurement gap – Joel Becker, METR

AI Engineer

AI
Key Takeaways:
  1. The Capability-Utility Gap is widening. We see a divergence where models get smarter but the friction of human-AI collaboration keeps productivity flat.
  2. Deploy AI for mid-level engineers or low-context tasks. Avoid forcing AI workflows on your top seniors working in complex legacy systems.
  3. The next year will focus on reliability over raw intelligence. The winners will have models that require the least amount of human babysitting.
See full notes
December 24, 2025

PhD Bodybuilder Predicts The Future of AI (97% Certain) [Dr. Mike Israetel]

Machine Learning Street Talk

AI
Key Takeaways:
  1. The Macro Shift: Scaling laws are hitting a diminishing return on raw data but a massive acceleration in reasoning. The shift from statistical matching to reasoning agents happens when models can recursively check their own logic.
  2. The Tactical Edge: Build for the agentic future by prioritizing high-context data pipelines. Models perform better when you provide massive context rather than relying on zero-shot inference.
  3. The Bottom Line: We are 24 months away from AI that makes unassisted human thought look like navigating London without a map. Prepare for a world where the most valuable skill is directing machine agency rather than performing manual logic.
See full notes
December 23, 2025

Continual System Prompt Learning for Code Agents – Aparna Dhinakaran, Arize

AI Engineer

AI
Key Takeaways:
  1. The transition from model-centric to loop-centric development. Performance is now a function of the feedback cycle rather than just the weights of the frontier model.
  2. Implement an LLM-as-a-judge step that outputs a "Reason for Failure" field. Feed this string directly into a meta-prompt to update your agent's system instructions automatically.
  3. Static prompts are technical debt. Teams that build automated systems to iterate on their agent's instructions will outpace those waiting for the next model training run.
See full notes
December 23, 2025

Developer Experience in the Age of AI Coding Agents – Max Kanat-Alexander, Capital One

AI Engineer

AI
Key Takeaways:
  1. The Macro Shift: The transition from writing to reviewing as the primary engineering activity. As agents generate more code, the human role moves from creator to editor.
  2. The Tactical Edge: Build CLIs for every internal tool to give agents a native text interface. This increases accuracy and speed compared to visual automation.
  3. The Bottom Line: Developer experience is the infrastructure for AI. Investing in clean code and fast feedback loops is the only way to ensure AI productivity gains do not decay over the next 12 months.
See full notes
December 23, 2025

Small Bets, Big Impact Building GenBI at a Fortune 100 – Asaf Bord, Northwestern Mutual

AI Engineer

AI
Key Takeaways:
  1. The Macro Shift: The transition from "Human-in-the-loop" to "Agent-as-the-interface" for enterprise data.
  2. The Tactical Edge: Audit your metadata quality now because LLM accuracy is a direct function of your documentation.
  3. The Bottom Line: Success in enterprise AI is not about the biggest model but about the smallest, most frequent wins that build institutional trust.
See full notes
December 24, 2025

METR's Benchmarks vs Economics: The AI capability measurement gap – Joel Becker, METR

AI Engineer

AI
Key Takeaways:
  1. The Capability-Productivity Gap. We are entering a period where model intelligence outpaces our ability to integrate it into high stakes production.
  2. Audit your stack. Identify tasks where "good enough" generation is a win versus high context tasks where AI is currently a net negative.
  3. Do not mistake a climbing benchmark for a finished product. For the next year, the biggest wins are not in smarter models but in better verification loops.
See full notes
December 24, 2025

PhD Bodybuilder Predicts The Future of AI (97% Certain) [Dr. Mike Israetel]

Machine Learning Street Talk

AI
Key Takeaways:
  1. The transition from simple Large Language Models to Reasoning Models marks the end of the stochastic parrot era.
  2. Build agentic workflows that utilize high-context windows for recursive problem solving.
  3. We are moving toward a world where intelligence is a commodity. Your value will shift from knowing things to directing outcomes over the next 12 months.
See full notes

Crypto Podcasts

February 5, 2026

Epstein's Crypto Ties Revealed + Why Everyone Hates CZ - Chopping Block

Unchained

Crypto
Key Takeaways:
  1. The current market environment is shifting from a growth-at-all-costs mentality to one where accountability and perceived fairness are paramount. This means market participants are increasingly scrutinizing not just financial performance, but also the ethical conduct of leaders and projects.
  2. Prioritize projects with transparent governance and clear, defensible value propositions, especially regarding founder incentives and liquidity. Scrutinize narratives that offer monocausal explanations for complex market events, as they often mask deeper, systemic issues or emotional responses.
  3. The crypto industry is maturing into a period of intense public scrutiny, where past associations and founder ethics will increasingly influence market sentiment and investor confidence. Over the next 6-12 months, expect continued moralizing and a demand for greater transparency, making a strong ethical stance as important as a strong balance sheet.
See full notes
February 5, 2026

Bitcoin Is Deeply Oversold. Does That Mean the Bottom Is In? - Bits + Bips

Unchained

Crypto
Key Takeaways:
  1. The current crypto downturn reflects a broader risk-off macro environment, where Bitcoin's sharp price movements, while painful, create unique technical vacuums that could lead to equally swift, opportunistic rebounds for those tracking specific momentum changes.
  2. Monitor for a "weight of the evidence" signal, combining oversold readings (like the weekly stochastic retest) with a clear reversal in shorter-term momentum indicators (daily MACD, Demark exhaustion) to identify high-probability entry points for counter-trend trades.
  3. While long-term crypto investors can ride out the current cyclical downturn, short-term traders must prioritize precise technical signals. The market is primed for dramatic bounces due to thin liquidity on the downside, making early entry crucial for capturing the largest gains when momentum finally reverses.
See full notes
February 5, 2026

Hivemind: Are L1s Still Overvalued, Hyperliquid’s End Game & State of The Market

Empire

Crypto
Key Takeaways:
  1. AI-driven efficiency gains are forcing a repricing across traditional software, directly exposing the overvaluation of crypto L1s that lack clear, revenue-generating utility.
  2. Prioritize protocols demonstrating consistent product shipping and clear revenue generation over speculative L1s.
  3. The crypto market is maturing, demanding real business models and product execution.
See full notes
February 5, 2026

Novelty Search Feb 5, 2026

taostats

Crypto
Key Takeaways:
  1. The demand for open-source, secure, and general-purpose AI inference is accelerating, pushing decentralized networks like BitTensor from experimental proofs to critical infrastructure.
  2. Investigate BitTensor's subnet ecosystem for opportunities to build applications that leverage its secure, open-source compute, particularly in high-demand niches like AI-assisted coding or interactive content generation.
  3. BitTensor's shift from free compute to a revenue-generating, self-sustaining flywheel signals a maturing decentralized AI market.
See full notes
February 5, 2026

AI on Ethereum: ERC-8004, x402, OpenClaw and the Botconomy

Bankless

Crypto
Key Takeaways:
  1. Autonomous agents will drive the next wave of internet GDP.
  2. Builders should create AI-native tooling and services leveraging ERC-8004 for agent identity/reputation, and X402 for fluid payments.
  3. Investors and builders must recognize that AI agents will soon be dominant users and creators of value onchain.
See full notes
February 5, 2026

Crypto Stress Test: Fees, Volatility, and Chain Performance

Lightspeed

Crypto
Key Takeaways:
  1. Evaluate L1s and app-specific protocols not just on throughput, but on their explicit value capture mechanisms.
  2. Prioritize protocols that directly align user activity and protocol revenue with token value, as seen in Hyperliquid's buyback model, over those with less direct or diluted value accrual to the native asset.
  3. Chains that can maintain low, stable fees during peak demand and clearly articulate how their native token captures value from growing on-chain activity will attract both users and capital.
See full notes