10 Hours of Listening.
5 Minutes of Reading.

Deep dives into the conversations shaping the future of AI, Robotics & Crypto.

Save hours of your time each week with our podcast aggregator

🔍 Search & Filter
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

AI Podcasts

December 31, 2025

[State of Evals] LMArena's $100M Vision — Anastasios Angelopoulos, LMArena

Latent Space

AI
Key Takeaways:
  1. The Macro Trend: The transition from static benchmarks to live human-in-the-loop evaluation. As models saturate fixed tests, the only remaining signal is subjective human preference at scale.
  2. The Tactical Edge: Monitor secret model drops on Arena to spot frontier capabilities before official releases. This provides a lead time advantage for builders choosing their tech stack.
  3. The Bottom Line: Arena is the new kingmaker. If you are building AI products, their expert-tier data is the most reliable map for navigating the frontier.
See full notes
December 31, 2025

[State of Context Engineering] Agentic RAG, Context Rot, MCP, Subagents — Nina Lopatina, Contextual

Latent Space

AI
Key Takeaways:
  1. The move from small models to medium models (15B to 70B) suggests that reasoning capability is outstripping the desire for low-latency edge deployment.
  2. Implement instruction-following re-rankers to prune your context window. This prevents the model from getting confused by irrelevant data.
  3. Stop building toys. The next year belongs to those who can build full agentic systems that handle billions of tokens without losing the plot.
See full notes
December 31, 2025

[NeurIPS Best Paper] 1000 Layer Networks for Self-Supervised RL — Kevin Wang et al, Princeton

Latent Space

AI
Key Takeaways:
  1. The wall between RL and self-supervised learning is crumbling, leading to a unified "representation-first" approach to AI.
  2. Swap your reward-heavy objectives for contrastive representation learning to access deeper, more stable architectures.
  3. If you aren't planning for RL models with 100x the current depth, you're building for the past.
See full notes
December 31, 2025

[State of AI Papers 2025] Fixing Research with Social Signals, OCR & Implementation — Team AlphaXiv

Latent Space

AI
Key Takeaways:
  1. Academic research is transitioning from a "publish or perish" PDF culture to an "implement or ignore" code culture.
  2. Use AlphaXiv to filter research by social signal and implementation ease rather than just keyword relevance.
  3. The PDF is an antiquated artifact. In 2025, the value of a paper is measured by the speed at which a developer can spin up its Docker container.
See full notes
December 31, 2025

[State of MechInterp] SAEs in Production, Circuit Tracing, AI4Science, "Pragmatic" Interp — Goodfire

Latent Space

AI
Key Takeaways:
  1. The Macro Trend: The transition from black box scaling to transparent steering. As models enter regulated industries, the ability to prove why a model made a decision becomes more valuable than the decision itself.
  2. The Tactical Edge: Deploy sidecar models for monitoring. Instead of using expensive LLM-as-a-judge prompts, probe specific internal features to catch hallucinations at the activation level.
  3. The Bottom Line: The next year belongs to the pragmatic researchers. If you cannot explain your model's reasoning, you will not be allowed to deploy it in high-stakes environments.
See full notes
December 31, 2025

[State of Code Evals] After SWE-bench, Code Clash & SOTA Coding Benchmarks recap — John Yang

Latent Space

AI
Key Takeaways:
  1. The transition from completion to agency requires moving from static repos to active, economically valuable environments.
  2. Prioritize agentic workflows that emphasize codebase understanding over simple code generation.
  3. The next 12 months will see a move from stunt autonomy to integrated human-AI systems that handle long-running tasks without losing the human intent.
See full notes
December 31, 2025

[State of Research Funding] Beyond NSF, Slingshots, Open Frontiers — Andy Konwinski, Laude Institute

Latent Space

AI
Key Takeaways:
  1. The transition from monolithic models to compound systems means the value is migrating to the orchestration and context layer.
  2. Prioritize tools like DSPy and context management frameworks to build high-leverage applications that do not depend on proprietary model updates.
  3. Open research is the only way to maintain a competitive edge. If the US stops publishing, it stops leading.
See full notes
December 31, 2025

Infinity, Paradoxes, Gödel Incompleteness & the Mathematical Multiverse | Lex Fridman Podcast #488

Lex Fridman

AI
Key Takeaways:
  1. From Singular Logic to Pluralistic Systems. As we build complex AI, we must move from seeking one "correct" model to managing a multiverse of conflicting but internally consistent logical frameworks.
  2. Audit for Incompleteness. When designing protocols, identify the "independent" variables that your system cannot prove or settle internally.
  3. Truth is bigger than code. Over the next year, the winners will be those who stop trying to "solve" the universe and start navigating the multiverse of possible truths.
See full notes
December 31, 2025

AI in 2026: 3 Predictions For What’s To Come (a16z Big Ideas)

a16z

AI
Key Takeaways:
  1. Outcome-Based Intelligence. We are moving from AI as a Service to AI as an Outcome where value is tied to results rather than usage.
  2. Target Non-Public Data. Build applications in sectors like law or lending where the most valuable data is private and un-crawlable.
  3. The next two years will separate companies that use AI to save pennies from those that use AI to capture entire markets through autonomous systems and proprietary data loops.
See full notes

Crypto Podcasts

February 5, 2026

Epstein's Crypto Ties Revealed + Why Everyone Hates CZ - Chopping Block

Unchained

Crypto
Key Takeaways:
  1. The current market environment is shifting from a growth-at-all-costs mentality to one where accountability and perceived fairness are paramount. This means market participants are increasingly scrutinizing not just financial performance, but also the ethical conduct of leaders and projects.
  2. Prioritize projects with transparent governance and clear, defensible value propositions, especially regarding founder incentives and liquidity. Scrutinize narratives that offer monocausal explanations for complex market events, as they often mask deeper, systemic issues or emotional responses.
  3. The crypto industry is maturing into a period of intense public scrutiny, where past associations and founder ethics will increasingly influence market sentiment and investor confidence. Over the next 6-12 months, expect continued moralizing and a demand for greater transparency, making a strong ethical stance as important as a strong balance sheet.
See full notes
February 5, 2026

Bitcoin Is Deeply Oversold. Does That Mean the Bottom Is In? - Bits + Bips

Unchained

Crypto
Key Takeaways:
  1. The current crypto downturn reflects a broader risk-off macro environment, where Bitcoin's sharp price movements, while painful, create unique technical vacuums that could lead to equally swift, opportunistic rebounds for those tracking specific momentum changes.
  2. Monitor for a "weight of the evidence" signal, combining oversold readings (like the weekly stochastic retest) with a clear reversal in shorter-term momentum indicators (daily MACD, Demark exhaustion) to identify high-probability entry points for counter-trend trades.
  3. While long-term crypto investors can ride out the current cyclical downturn, short-term traders must prioritize precise technical signals. The market is primed for dramatic bounces due to thin liquidity on the downside, making early entry crucial for capturing the largest gains when momentum finally reverses.
See full notes
February 5, 2026

Hivemind: Are L1s Still Overvalued, Hyperliquid’s End Game & State of The Market

Empire

Crypto
Key Takeaways:
  1. AI-driven efficiency gains are forcing a repricing across traditional software, directly exposing the overvaluation of crypto L1s that lack clear, revenue-generating utility.
  2. Prioritize protocols demonstrating consistent product shipping and clear revenue generation over speculative L1s.
  3. The crypto market is maturing, demanding real business models and product execution.
See full notes
February 5, 2026

Novelty Search Feb 5, 2026

taostats

Crypto
Key Takeaways:
  1. The demand for open-source, secure, and general-purpose AI inference is accelerating, pushing decentralized networks like BitTensor from experimental proofs to critical infrastructure.
  2. Investigate BitTensor's subnet ecosystem for opportunities to build applications that leverage its secure, open-source compute, particularly in high-demand niches like AI-assisted coding or interactive content generation.
  3. BitTensor's shift from free compute to a revenue-generating, self-sustaining flywheel signals a maturing decentralized AI market.
See full notes
February 5, 2026

AI on Ethereum: ERC-8004, x402, OpenClaw and the Botconomy

Bankless

Crypto
Key Takeaways:
  1. Autonomous agents will drive the next wave of internet GDP.
  2. Builders should create AI-native tooling and services leveraging ERC-8004 for agent identity/reputation, and X402 for fluid payments.
  3. Investors and builders must recognize that AI agents will soon be dominant users and creators of value onchain.
See full notes
February 5, 2026

Crypto Stress Test: Fees, Volatility, and Chain Performance

Lightspeed

Crypto
Key Takeaways:
  1. Evaluate L1s and app-specific protocols not just on throughput, but on their explicit value capture mechanisms.
  2. Prioritize protocols that directly align user activity and protocol revenue with token value, as seen in Hyperliquid's buyback model, over those with less direct or diluted value accrual to the native asset.
  3. Chains that can maintain low, stable fees during peak demand and clearly articulate how their native token captures value from growing on-chain activity will attract both users and capital.
See full notes