10 Hours of Listening.
5 Minutes of Reading.

Deep dives into the conversations shaping the future of AI, Robotics & Crypto.

Save hours of your time each week with our podcast aggregator

🔍 Search & Filter
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

AI Podcasts

March 28, 2025

Hash Rate - Ep 103: 'It's AI' $TAO Subnet 32

Hash Rate pod - Bitcoin, AI, DePIN, DeFi

AI

Key Takeaways:


1. Niche Focus Wins: Its AI demonstrates the power of specializing in one thing (AI text detection) within the BitTensor ecosystem, achieving leading accuracy and carving out a clear market position.


2. Ecosystem Arbitrage: There's a significant valuation gap between BitTensor AI projects (like Its AI or ReadyAI) and comparable VC-funded companies (GPTZero, Scale AI), suggesting potential upside once accessibility improves.


3. The Bridge is Coming: Easier access via wrapped tokens or user-friendly platforms bridging BitTensor to chains like Solana/Ethereum is the critical next step for unlocking subnet value and attracting mainstream capital.

See full notes
March 28, 2025

Subnet 3 Templar –World’s First Distributed, Permissionless, Incentivized Open Source AI Training

Opentensor Foundation

AI

Key Takeaways:


1.  Permissionless Works: Templar validates that truly open, decentralized AI training with economic incentives is not just theory—it's running, learning, and stabilizing *now*.
2.  Incentives Align: Token ownership fundamentally shifts dynamics, turning potential adversaries into collaborative builders invested in the network's success.
3.  The Future is Co-Owned: Templar paves the way for globally co-owned, state-of-the-art AI models, potentially outcompeting even the most well-funded centralized labs and offering a more equitable model for AI development.

See full notes
March 28, 2025

Novelty Search March 27, 2025

taostats

AI

Key Takeaways:


1.  Incentivized Decentralized Training Works: Templar demonstrates that coordinating anonymous miners globally via crypto-economic incentives to train a single AI model is feasible, moving beyond permissioned compute pools.
2.  Production is the Only True Test: Real-world deployment with adversarial miners is non-negotiable for building robust decentralized systems, revealing exploits impossible to find otherwise. Templar's rapid iteration (>200 runs) provides a significant edge.
3.  Community & Ownership are Superpowers: Openly sharing struggles and leveraging tokenomics to give miners ownership transformed Templar's development, aligning incentives and fostering collective problem-solving far exceeding a centralized team's capacity.

See full notes
March 24, 2025

Steffen Cruz and Will Squires: Macrocosmos, AI, APEX, Data, Bittensor Subnets 1 9 13 25 37 | Ep. 32

Ventura Labs

AI

Key Takeaways:

  1. The open-source AI landscape has rapidly evolved, with models like Deepseek and R1 significantly impacting the decentralized AI space.
  2. Macrocosmos focuses on building high-quality, feature-rich products that leverage the power of Bittensor's network and incentivize miner innovation.
  3. Long-term vision, community engagement, and sustainable monetization strategies are critical for success in the maturing Bittensor ecosystem.
See full notes
March 24, 2025

ARC Prize Version 2 Launch Video!

Machine Learning Street Talk

AI

Key Takeaways:

  1. ARC V2 represents a significant advancement in benchmarking AI reasoning capabilities, moving beyond the limitations of pre-trained language models.
  2. Efficiency, not just capability, is a critical aspect of intelligence, and ARC V2 effectively measures this efficiency gap between AI and humans.
  3. While O3 demonstrates early signs of fluid intelligence, it is not yet human-level and further breakthroughs are needed to achieve true AGI.
See full notes
March 24, 2025

Steffen Cruz and Will Squires: Macrocosmos, AI, APEX, Data, Bittensor Subnets 1 9 13 25 37 | Ep. 32

Ventura Labs

AI

Key Takeaways:

  1. Macrocosmos is building an interconnected suite of products (Constellation) that leverage different Bittensor subnets, aiming for a synergistic approach to decentralized AI.
  2. The focus on building high-quality, feature-rich products over simply competing on price highlights a maturing mindset within the Bittensor ecosystem.
  3. The emphasis on long-term vision, community engagement, and sustainable monetization strategies is crucial for navigating the rapidly evolving decentralized AI landscape.
See full notes
March 23, 2025

The Magic of LLM Distillation — Rishi Agarwal, Google DeepMind

Latent Space

AI

Key Takeaways:

  1. Distillation is more than just model compression; it's a powerful technique for improving LLM performance and enabling practical deployment.
  2. On-policy distillation offers significant advantages over traditional methods, especially for complex, long-horizon tasks.
  3. Choose the right distillation strategy based on the specific needs of your application, balancing complexity, cost, and desired performance.
  4. Explore on-policy distillation if your model tackles complex or lengthy generation tasks.
  5. Prioritize simple distillation methods initially, and escalate to more complex techniques only when necessary.
  6. Don't underestimate the value of distillation; a small improvement during training can yield massive benefits during deployment.
See full notes
March 23, 2025

Exploring Program Synthesis: Francois Chollet, Kevin Ellis, Zenna Tavares

Machine Learning Street Talk

AI

Key Takeaways:

  1. Deep learning alone is insufficient for program synthesis; symbolic approaches and hybrid models are crucial for tackling discrete, algorithmic tasks.
  2. Developing dedicated infrastructure for program synthesis is premature; further research is needed to identify effective, scalable techniques.
  3. Benchmarks like Arc are essential for driving progress in program synthesis, providing focused environments to study generalization and adaptation.
  4. Deep learning's strength lies in pattern recognition, not program generation.  Symbolic methods or hybrid models are key to unlocking the true potential of program synthesis.
  5. A "Keras for Program Synthesis" is coming, but not yet.  More foundational research is needed before building specialized frameworks.
  6. Arc, particularly Arc 2,  is a crucial testing ground for stronger generalization in AI, pushing beyond mere interpolation towards true compositional understanding.
See full notes
March 22, 2025

Test-Time Adaptation: the key to reasoning with DL

Machine Learning Street Talk

AI

Key Takeaways:

  1. Test-time adaptation is a powerful technique for tackling abstract reasoning tasks like ARC, enabling neural networks to adapt to novel perceptual challenges and achieve state-of-the-art performance.
  2. Prioritizing raw representations and flexible contextualization over specialized encodings or program synthesis can be crucial for handling ARC’s adversarial and abstract nature.
  3. The future of reasoning with deep learning lies in exploring creative test-time compute strategies, including more nuanced pre-training and diverse benchmarking, to further unlock the potential of neural networks for complex reasoning.
See full notes

Crypto Podcasts

February 9, 2026

MegaETH Live, Saylor Slippage & Tempo | Livestream

0xResearch

Crypto
Key Takeaways:
  1. The crypto industry is experiencing a gravitational pull towards institutionalization, where traditional finance and tech giants are increasingly building on or acquiring web3 infrastructure and talent.
  2. Monitor projects like MegaETH that are launching with clear, measurable KPIs for their token generation events.
  3. The next 6-12 months will see increased competition from well-capitalized, traditional players building on crypto rails, potentially limiting direct token exposure to fundamental infrastructure plays.
See full notes
February 9, 2026

MegaETH Mainnet is Live! — The Next Era of Ethereum Scaling

Bankless

Crypto
Key Takeaways:
  1. The Ethereum scaling narrative is evolving from L2s as mere L1 extensions to specialized, high-performance execution layers. This creates a barbell structure where Ethereum provides core security, and L2s deliver extreme throughput and novel features.
  2. Builders should explore high-performance L2s like MegaETH for applications requiring ultra-low latency and high transaction volumes, especially in gaming, DeFi, and AI agent interactions, where traditional fee models are prohibitive.
  3. MegaETH's mainnet launch, with its technical innovations and unconventional economic and app strategies, signals a new generation of L2s.
See full notes
February 8, 2026

The Pro-Quantum Argument w/ Tyler Whittle

The Gwart Show

Crypto
Key Takeaways:
  1. The theoretical certainty of quantum computing, coupled with accelerating engineering breakthroughs, means the digital asset space must proactively build "crypto agility" into its core protocols. This ensures systems can adapt to new cryptographic standards as current ones become obsolete.
  2. Secure your Bitcoin by ensuring it resides in unspent SegWit or P2SH addresses, as these keep your public key hidden until spent. This provides a temporary shield against quantum attacks.
  3. Quantum computing is not a distant threat but a near-term risk with a 20% chance of moving Satoshi's coins by 2030. Ignoring this could lead to a systemic collapse of the "store of value" narrative for Bitcoin and other digital assets, forcing a costly and painful reset.
See full notes
February 8, 2026

If Bitcoin doesn't quantum-proof it will be EXPENSIVE

The Gwart Show

Crypto
Key Takeaways:
  1. The crypto industry must shift from viewing quantum as a distant threat to an imminent engineering challenge requiring proactive, coordinated defense.
  2. Ensure any long-term Bitcoin holdings are in SegWit addresses never spent from, as these public keys remain hashed and are currently more resistant to quantum attacks.
  3. A 20% chance of Satoshi's coins moving by 2030, and near certainty by 2035, means delaying upgrades is a multi-billion dollar bet against Bitcoin's core security narrative.
See full notes
February 7, 2026

Do We Still Need L2s Now That Ethereum Has Scaled? - Uneasy Money

Unchained

Crypto
Key Takeaways:
  1. Ethereum's L1 scaling redefines L2s from pure throughput solutions to specialized platforms, while AI agents introduce a new, autonomous layer of on-chain activity.
  2. Investigate L2s that offer unique features or cater to specific enterprise needs beyond just low fees.
  3. The future of crypto involves a more performant Ethereum L1, specialized L2s, and a burgeoning agentic economy.
See full notes
February 8, 2026

Want to Hire an AI Agent? Check Their Reputation Via ERC-8004

Unchained

Crypto
Key Takeaways:
  1. The rapid rise of autonomous AI agents demands a decentralized trust layer. Blockchains, initially an "internet of money," are now becoming the foundational "internet of trusted agent commerce," providing verifiable identity and reputation essential for multi-agent economies. This shift moves beyond simple payments to establishing a credible, censorship-resistant framework for AI-driven interactions.
  2. Integrate ERC-8004 into agent development. Builders should register their AI agents on ERC-8004 to establish verifiable on-chain identity and reputation, attracting trusted interactions and avoiding future centralized platform fees or censorship.
  3. The future of AI commerce hinges on decentralized trust. ERC-8004 is the foundational primitive for this, ensuring that as AI agents become more sophisticated and transact more value, the underlying infrastructure remains open, fair, and resistant to single points of control. This is a critical piece of the puzzle for anyone building or investing in the agent economy over the next 6-12 months.
See full notes