The transition from Model-Centric to Context-Centric AI. As base models commoditize, the value moves to the proprietary data retrieval and prompt optimization layers.
Implement an instruction-following re-ranker. Use small models to filter retrieval results before they hit the main context window to maintain high precision.
Context is the new moat. Your ability to coordinate sub-agents and manage context rot will determine your product's reliability over the next year.
The convergence of RL and self-supervised learning. As the boundary between "learning to see" and "learning to act" blurs, the winning agents will be those that treat the world as a giant classification problem.
Prioritize depth over width. When building action-oriented models, increase layer count while maintaining residual paths to maximize intelligence per parameter.
The "Scaling Laws" have arrived for RL. Expect a new class of robotics and agents that learn from raw interaction data rather than human-crafted reward functions.
The Age of Scaling is hitting a wall, leading to a migration toward reasoning and recursive models like TRM that win on efficiency.
Filter your research feed by implementation ease rather than just citation count to accelerate your development cycle.
In a world of AI-generated paper slop, the ability to quickly spin up a sandbox and verify code is the only sustainable competitive advantage for AI labs.
The transition from Black Box to Glass Box AI. Trust is the next moat, and interpretability is the tool to build it.
Use feature probing for high-stakes monitoring. It is more effective and cheaper than using LLMs as judges for tasks like PII scrubbing.
Understanding model internals is no longer just a safety research project. It is a production requirement for any builder deploying AI in regulated or high-stakes environments over the next 12 months.
The transition from completion to agency means benchmarks are moving from static snapshots to active environments.
Integrate unsolvable test cases into internal evaluations to measure model honesty.
Success in AI coding depends on navigating the messy, interactive reality of production codebases rather than chasing high scores on memorized puzzles.
The transition from technology push to market pull requires builders to stop focusing on the stack and start obsessing over user psychology.
Apply the Mom Test by asking users about their current workflows instead of pitching your solution. This prevents building expensive features that nobody uses.
The next decade of AI will be won by those who understand the human condition as deeply as they understand the transformer architecture.
The Macro Shift: Content Abundance vs. Attention Scarcity. As AI makes the "what" of gaming cheap, the "where" (distribution) and "who" (high-LTV users) become the only defensible assets.
The Tactical Edge: Skin the Game. Use AI to rapidly iterate on visual assets for existing mechanics to capture trending subcultures within crypto communities.
The Bottom Line: The future of gaming isn't about building a 10-year world; it's about building high-fidelity, ephemeral experiences that drive value to on-chain ecosystems.
The Macro Shift: Macro gravity is currently winning as high interest rates suppress risk-on assets while AI captures the remaining speculative energy.
The Tactical Edge: Accumulate Ethereum only when it enters the regression band and Bitcoin when it touches the 200-week moving average.
The Bottom Line: The next major opportunity likely arrives in the summer of 2026 when monetary policy finally turns accommodative and the labor market stabilizes.
The transition from utilization-based pools to intent-based matching engines is the next evolution of DeFi. This movement mirrors the move from AMMs to order books in spot trading.
Monitor the rollout of Kamino’s fixed-rate products to lock in borrowing costs for geared positions. This move protects against the volatility of variable rate markets during high-activity periods.
Kamino is positioning itself as the back-end for the next generation of fintech. If they successfully bridge off-chain collateral, the protocol moves from a crypto-native tool to a global financial utility.
The Macro Shift: Liquidity is returning as the Treasury General Account drains, but capital is becoming more selective. The "rising tide" no longer lifts all boats; it only lifts those with clear value capture.
The Tactical Edge: Prioritize protocols with intrinsic cash flow or those partnering with legacy giants like FIS. Move away from "lottery ticket" tokens that lack a clear revenue mechanism.
The Bottom Line: 2026 will be the year of the "Quality Filter." Investors who survive the current wash-out will find value in the consolidation of the super apps and the institutionalization of on-chain credit.