10 Hours of Listening.
5 Minutes of Reading.

Deep dives into the conversations shaping the future of AI, Robotics & Crypto.

Save hours of your time each week with our podcast aggregator

🔍 Search & Filter
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

AI Podcasts

February 3, 2026

Inside The Biggest Uranium Deal In 50 Years | Scott Nolan, CEO of General Matter

The Generalist

AI
Key Takeaways:
  1. Geopolitical tensions and the insatiable energy demands of the AI revolution are forcing a re-evaluation of national energy security.
  2. Invest in companies applying "first principles" engineering and a commercial cost-reduction mindset to foundational, capital-intensive industries.
  3. The US nuclear fuel supply chain is undergoing a rapid, government-backed revitalization.
See full notes
February 3, 2026

OpenClaw Makes AI Agents and CPUs Get Real

Semi Doped

AI
Key Takeaways:
  1. The macro trend of autonomous AI agents is shifting compute demand beyond GPUs, creating an unexpected CPU crunch and forcing a re-evaluation of on-premise inference and cost-optimized model routing for security and efficiency.
  2. Investigate hybrid compute strategies, combining secure local environments (Mac Minis, home servers) with cloud-based LLMs, and explore multi-model API gateways like OpenRouter to optimize agent costs and performance.
  3. AI agents are here, demanding a rethink of your compute stack and security protocols. Prepare for a future where CPU capacity, not just GPU, becomes a critical bottleneck, and strategic cost management for diverse AI models is non-negotiable for competitive advantage.
See full notes
February 4, 2026

⚡️ Context graphs: AI’s trillion-dollar opportunity — Jaya Gupta, Ashu Garg, Foundation Capital

Latent Space

AI
Key Takeaways:
  1. The move from general-purpose LLMs to specialized AI agents demands a new data architecture that captures the *why* of decisions, not just the *what*. This creates a new, defensible layer of institutional memory, moving value from raw model IP to proprietary decision intelligence.
  2. Invest in or build agentic systems that are in the *orchestration path* of specific business processes. This allows for the organic capture of decision traces, forming a proprietary context graph that incumbents cannot easily replicate.
  3. Over the next 12 months, the ability to build and extract value from context graphs will define the winners in the enterprise AI space, creating a new "context graph stack" that will be 10x more valuable than the modern data stack.
See full notes
February 2, 2026

We Entered an Era Where No One Knows What Comes Next

Turing Post

AI
Key Takeaways:
  1. AI's progress has transitioned from a linear, bottleneck-driven model to a multi-layered, interconnected explosion of advancements. This makes traditional long-term forecasting obsolete.
  2. Prioritize building and investing in adaptable systems and teams that can rapidly respond to emergent opportunities across diverse AI layers. Focus on robust interfaces and composability rather than betting on a single "next frontier."
  3. The next 6-12 months will test our ability to operate in an environment where the future is increasingly opaque. Success will come from embracing this unpredictability, focusing on present opportunities, and building for resilience against an unknowable future.
See full notes
February 2, 2026

Ben Horowitz & David Solomon on Why Scale Is The Only Thing That Matters

a16z

AI
Key Takeaways:
  1. The Macro Shift: Unprecedented fiscal and monetary stimulus, combined with an AI-driven capital investment super cycle, creates a "sweet spot" for financial assets and growth technology. This favors institutions with scale and adaptability.
  2. The Tactical Edge: Prioritize investments in companies with proprietary data and significant GPU access, as these are new competitive moats in the AI era. For founders, secure capital to compete against well-funded incumbents.
  3. The Bottom Line: Scale and strategic capital deployment are paramount. Whether a financial giant or tech insurgent, the ability to grow, adapt to AI's new rules, and handle regulatory currents will determine relevance and success.
See full notes
February 1, 2026

Google’s AI Stack Is Unmatched (No One Else Is Even Close) w/ Ejaaz

Milk Road AI

AI
Key Takeaways:
  1. The AI industry is consolidating around players with deep, proprietary data and infrastructure, transforming general LLMs into personalized, transactional agents. This means value accrues to those who can not only build powerful models but also distribute them at scale and integrate them into daily life.
  2. Investigate companies building on top of Google's AI ecosystem or those creating niche applications that use personalized AI. Focus on solutions that move beyond simple chatbots to actual task execution and intent capture.
  3. Google's strategic moves, particularly with Apple and in e-commerce, signal a future where AI is deeply embedded in every digital interaction. Understanding this shift is crucial for identifying where value will be created and captured.
See full notes
January 31, 2026

State of AI in 2026: LLMs, Coding, Scaling Laws, China, Agents, GPUs, AGI | Lex Fridman Podcast #490

Lex Fridman

AI
Key Takeaways:
  1. The AI industry is pivoting from a singular AGI pursuit to a multi-pronged approach, where specialized models, advanced post-training, and geopolitical open-source competition redefine competitive advantage and talent acquisition.
  2. Invest in infrastructure and expertise for advanced post-training techniques like RLVR and inference-time scaling, as these are the primary drivers of capability gains and cost efficiency in current LLM deployments.
  3. The next 6-12 months will see continued rapid iteration in AI, driven by compute scale and algorithmic refinement rather than architectural overhauls. Builders and investors should focus on specialized applications, human-in-the-loop systems, and the strategic implications of open-weight models to capture value in this evolving landscape.
See full notes
January 31, 2026

Inside a Chinese AI Lab: How MiniMax Builds Open Models

Turing Post

AI
Key Takeaways:
  1. The open-source AI movement is democratizing access to powerful models, but this decentralization shifts the burden of safety and robust environmental adaptation from central labs to individual builders.
  2. Prioritize investing in or building tools that provide robust, scalable evaluation and alignment frameworks for open-weight models.
  3. The next 6-12 months will see a race to solve environmental adaptability and human alignment in open-weight agentic AI. Success here will define the practical utility and safety of the next generation of AI applications.
See full notes
February 1, 2026

Google’s AI Stack Is Unmatched (No One Else Is Even Close) w/ Ejaaz

Milk Road AI

AI
Key Takeaways:
  1. Data is the New Moat, and Google Owns the Farm
  2. Apple's Billion-Dollar Bet on Gemini
  3. Google's Intent to Own E-commerce and Personal AI
See full notes

Crypto Podcasts

January 12, 2026

Claude Opus 4.5’s Breakout Moment & Investing in 2026 with Qiao Wang

Empire

Crypto
Key Takeaways:
  1. The Macro Pivot: Proprietary data and enterprise switching costs are the only walls left standing as AI commoditizes the act of writing code.
  2. The Tactical Edge: Build internal tools using natural language agents to automate specific, low-volume workflows that third-party vendors ignore.
  3. The Bottom Line: The billion-dollar company with a single employee is no longer a fantasy; it is a mathematical certainty for those who master the prompt over the next twelve months.
See full notes
January 13, 2026

How Claude Code is Changing the World with Nick Emmons

The Rollup

Crypto
Key Takeaways:
  1. The migration from human-centric interfaces to agent-first protocols where software is a temporary utility rather than a permanent product.
  2. Use Git and MCP servers to give your agents a persistent memory and toolset, allowing them to work autonomously through complex loops.
  3. Software is no longer the prize; it is the commodity. Your value in the next year depends on how well you direct the agents that build it.
See full notes
January 12, 2026

HIP-3 Market Design and Felix’s Role | Charlie, Felix Protocol

0xResearch

Crypto
Key Takeaways:
  1. The Macro Strategic Pivot: Vertical Consolidation. Protocols are moving away from modularity toward integrated stacks to capture maximum fee revenue.
  2. The Tactical Edge: Monitor BLP Rates. Watch the spread between Felix and Hyperliquid’s native lending rates. Capital will migrate to the platform offering the lowest borrow cost for margin trading.
  3. The Bottom Line: Hyperliquid is winning by becoming a DeFi Super App rather than just a perp engine. Its success over the next year depends on its ability to manage UI fragmentation while keeping all revenue inside the Hype ecosystem.
See full notes
January 12, 2026

Is Canton a Real Blockchain? | Canton Founder Yuval Rooz

Bankless

Crypto
Key Takeaways:
  1. The Macro Transition: We are seeing a split between "Pure Crypto" for sovereignty and "Institutional Rails" for global capital markets.
  2. The Tactical Edge: Monitor Broadridge volume to gauge the actual velocity of institutional on-chain adoption.
  3. The Bottom Line: The next decade is not about crypto replacing banks. It is about banks adopting crypto's efficiency while keeping their legal moats.
See full notes
January 12, 2026

Who Actually Owns the Aave Brand -- the DAO or Labs? Uneasy Money

Unchained

Crypto
Key Takeaways:
  1. The "Fat App" thesis is evolving into the "Sovereign Brand" thesis where the front-end is the ultimate moat.
  2. Audit your protocol's meatspace dependencies—domains, trademarks, and front-ends—before they become points of failure.
  3. Decentralization isn't just about smart contracts; it is about ensuring the front door to your protocol cannot be locked by a single executive.
See full notes
January 10, 2026

Why Crypto Still Struggles to Capture the Value It Creates | Roundup

Bell Curve

Crypto
Key Takeaways:
  1. The transition from "Software as a Service" to "Software as a Network" where value flows to the protocol layer.
  2. Prioritize infrastructure that owns the end-user relationship or provides essential stability for open stacks.
  3. AI models will migrate to crypto rails to solve the monetization gap that has hindered open-source development for forty years.
See full notes