10 Hours of Listening.
5 Minutes of Reading.

Deep dives into the conversations shaping the future of AI, Robotics & Crypto.

Save hours of your time each week with our podcast aggregator

🔍 Search & Filter
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

AI Podcasts

December 13, 2025

Minimax M2 – Olive Song, MiniMax

AI Engineer

AI
Key Takeaways:
  1. Strategic Implication: The future of AI agents hinges on practical utility and adaptive reasoning, not just raw scale. Models that integrate expert feedback and iterative thinking will outperform those focused solely on benchmarks.
  2. Builder/Investor Note: Builders should prioritize robust generalization through diverse training perturbations. Investors should seek models that demonstrate real-world adoption and cost-effective scalability for multi-agent architectures.
  3. The So What?: The next 6-12 months will see a shift towards smaller, highly specialized, and deeply integrated AI models that function as reliable co-workers, driving efficiency in developer workflows and complex agentic tasks.
See full notes
December 14, 2025

From Vibe Coding To Vibe Engineering – Kitze, Sizzy

AI Engineer

AI
Key Takeaways:
  1. Strategic Shift: The industry is moving from code generation to code orchestration. The value lies in guiding AI, not just prompting it.
  2. Builder/Investor Note: Invest in tools that enhance "vibe engineering" (real-time steering, context management) and education for senior developers. Avoid strategies that solely rely on AI to replace junior talent without skilled oversight.
  3. The "So What?": Over the next 6-12 months, the ability to effectively "vibe engineer" will become a critical differentiator, separating high-performing teams from those drowning in AI-generated "slop."
See full notes
December 13, 2025

The Mathematical Foundations of Intelligence [Professor Yi Ma]

Machine Learning Street Talk

AI
Key Takeaways:
  1. Strategic Implication: The next frontier in AI involves a fundamental shift from statistical compression to genuine abstraction and understanding.
  2. Builder/Investor Note: Focus on research and development that grounds AI in first principles, leading to more robust, efficient, and interpretable systems, rather than solely scaling existing empirical architectures.
  3. The "So What?": The pursuit of mathematically derived, parsimonious, and self-consistent AI architectures offers a path to overcome current limitations, enabling systems that truly learn, adapt, and reason in the next 6-12 months and beyond.
See full notes
December 12, 2025

Deciphering Secrets of Ancient Civilizations, Noah's Ark, and Flood Myths | Lex Fridman Podcast #487

Lex Fridman

AI
Key Takeaways:
  1. Data Scarcity is a Feature, Not a Bug: Be wary of narratives built on incomplete data. Just because a dataset (on-chain, AI training) is all we have, doesn't mean it's representative.
  2. Standardization is Survival: For any new technology (crypto protocols, AI models), robust "lexicography" and clear documentation are critical for long-term adoption and preventing fragmentation.
  3. Question the "Received Law": Don't assume current "archaeological evidence" (e.g., current blockchain data, AI model limitations) tells the whole story. Look for the "perishable materials" that might be missing.
See full notes
December 11, 2025

Can you prove AI ROI in Software Eng? (Stanford 120k Devs Study) – Yegor Denisov-Blanch, Stanford

AI Engineer

AI
Key Takeaways:
  1. Strategic Shift: AI ROI isn't about adoption, it's about intelligent adoption. The gap between top and bottom performers will widen based on measurement sophistication and codebase health.
  2. Builder/Investor Note: For builders, prioritize codebase hygiene and engineer training before or concurrently with AI rollout. For investors, scrutinize AI productivity claims; ask about code quality, rework rates, and specific measurement frameworks beyond simple usage.
  3. The "So What?": In the next 6-12 months, companies that master AI integration by focusing on quality, measurement, and environment will compound their gains, while those chasing superficial metrics risk significant tech debt and negative ROI.
See full notes
December 11, 2025

The State of AI Code Quality: Hype vs Reality — Itamar Friedman, Qodo

AI Engineer

AI
Key Takeaways:
  1. Strategic Implication: The next frontier of AI in software isn't just *generating* code, but *governing* its quality. This shift will redefine competitive advantage.
  2. Builder/Investor Note: Prioritize investments in AI-powered quality gates, intelligent code review, and dynamic testing. For builders, feed your AI tools rich, comprehensive context. For investors, look for companies building these "picks and shovels."
  3. The "So What?": The promised 2x-10x productivity gains are real, but they won't come from raw code generation alone. The next 6-12 months will see a scramble to implement agentic, context-aware quality workflows to unlock AI's true potential across the SDLC.
See full notes
December 12, 2025

Hard Won Lessons from Building Effective AI Coding Agents – Nik Pash, Cline

AI Engineer

AI
Key Takeaways:
  1. Strategic Shift: The competitive edge in AI agents is moving from clever architecture to superior model training data and robust RL environments.
  2. Builder/Investor Note: Prioritize raw model capability over complex agent stacks. Builders should contribute to open-source RL environments; investors should seek companies focused on generating and leveraging high-quality training data.
  3. The "So What?": The next 6-12 months will see a race to build and utilize real-world, outcome-driven benchmarks. Open initiatives like Client Bench could democratize model improvement and accelerate AI development significantly.
See full notes
December 12, 2025

Moving away from Agile: What's Next – Martin Harrysson & Natasha Maniar, McKinsey & Company

AI Engineer

AI
Key Takeaways:
  1. Strategic Implication: The "Agile" era is ending. AI demands a new, more fluid, and context-aware operating model for software development.
  2. Builder/Investor Note: Look for (or build) companies that are fundamentally redesigning their SDLC, team structures, and roles around AI, not just bolting on tools. This includes robust, outcome-based measurement.
  3. The "So What?": The next 6-12 months will separate the AI-native leaders from the laggards. Those who embrace this human and organizational transformation will unlock exponential value; others will be stuck with marginal gains.
See full notes
December 13, 2025

Proactive Agents – Kath Korevec, Google Labs

AI Engineer

AI
Key Takeaways:
  1. Strategic Implication: The market is moving beyond basic "copilot" functionality. The next frontier is proactive, context-aware AI that reduces cognitive load and integrates seamlessly into existing workflows.
  2. Builder/Investor Note: Focus on building or investing in multi-agent architectures that converge context across the entire product lifecycle (code, design, data) and prioritize human-in-the-loop alignment over pure autonomy.
  3. The "So What?": The fundamental patterns of software development (Git, IDEs, even code itself) are ripe for disruption. Don't be afraid to question old ways; the future of how software is built is being invented right now.
See full notes

Crypto Podcasts

February 27, 2025

Why MegaETH Leaves Consensus to Ethereum

The DCo Podcast

Crypto

Key Takeaways:

  • :
  • 1. Enhanced Security through Ethereum: By outsourcing consensus to Ethereum, MegaETH leverages a highly secure and decentralized network, minimizing vulnerabilities associated with centralized consensus mechanisms.
  • 2. Performance Optimization: Avoiding its own consensus process allows MegaETH to reduce latency and boost transaction speeds, making it a high-performance blockchain solution.
  • 3. Strategic Leveraging of Established Protocols: Developers and investors should consider the benefits of utilizing established consensus protocols like Ethereum’s to ensure robust security while focusing on other aspects of blockchain performance.
See full notes
February 25, 2025

The State Of Crypto & AI | Illia Polosukhin & Bowen Wang

Lightspeed

Crypto
AI
Infrastructure

Key Takeaways:

  • :
  • 1. NEAR is pioneering a unified blockchain infrastructure integrating AI, eliminating the need for multiple chains and enhancing user experience.
  • 2. The launch of NEAR 2.0 with fully sharded architecture and reduced block times positions NEAR as a scalable and high-performance blockchain platform.
  • 3. NEAR’s focus on chain abstraction and Trusted Execution Environments sets it apart from other blockchain and Layer 2 solutions, offering a more seamless and secure user experience.
See full notes
February 25, 2025

Futarchy Deep Dive: Can Markets Make Better Decisions? | Proph3t

Bell Curve

Crypto
AI
Others

Key Takeaways:

  • :
  • 1. Futarchy harnesses market efficiency to potentially outperform traditional governance in decision-making.
  • 2. Crypto’s regulatory resistance is essential for implementing innovative governance models like futarchy.
  • 3. Enhanced liquidity and decentralized capital formation are critical for the scalability and success of futarchy-based organizations.
See full notes
February 24, 2025

Where Does Crypto Go From Here? | EP 71

Good Game Podcast

Crypto
AI
Infrastructure

Key Takeaways:

  • 1. Focus on Financial Utility: Crypto's strongest and most sustainable applications remain within the financial sector, emphasizing the need for robust, revenue-generating projects over speculative tokens.
  • 2. Leverage AI for Innovation: Startups that effectively integrate AI to solve real-world problems, particularly in personalized applications, are poised for significant growth and competitive advantage.
  • 3. Embrace Tokenization: The future of equity and capital formation lies in tokenizing shares and streamlining IPO processes on-chain, presenting a transformative opportunity for startups and investors alike.
See full notes
February 24, 2025

Solana’s Vibe Shift, Restaking, and Yapping About Kaito | Ian Unsworth

0xResearch

Crypto
DeFi
AI

Key Takeaways:

  • :
  • 1. Solana’s Dependence on Meme Coins: While meme coins drive substantial revenue for Solana, they also introduce significant vulnerabilities amid changing market sentiments and regulatory pressures.
  • 2. Staking Yield Dynamics: Proposed reductions in staking yields are unlikely to trigger mass unstaking but will push the ecosystem towards more liquid and innovative staking solutions.
  • 3. Kaido’s Tokenomics Potential: Emerging platforms like Kaido offer novel tokenomics and AI integration, presenting new opportunities and challenges in monetizing user engagement and attention.
See full notes
February 24, 2025

Memes are Dead, Long Live the Memes | Nick Tomaino

Empire

Crypto
DeFi

Key Takeaways:

  • :
  • 1. Meme coins, while initially promising, often exploit retail investors through pump and dump schemes, necessitating a wary approach.
  • 2. Investing in crypto requires a long-term vision, focusing on meaningful projects and founders committed to sustained growth over fleeting gains.
  • 3. Stablecoins are pivotal in maintaining the US dollar's global influence and are set to grow with increasing adoption and regulatory support.
See full notes