10 Hours of Listening.
5 Minutes of Reading.

Deep dives into the conversations shaping the future of AI, Robotics & Crypto.

Save hours of your time each week with our podcast aggregator

🔍 Search & Filter
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

AI Podcasts

January 30, 2026

JetBrains + Weights & Biases: Establishing frameworks and best practices for enterprise AI agents

Weights & Biases

AI
Key Takeaways:
  1. The rapid expansion of AI agents from research labs to enterprise production demands a corresponding maturation of development and operational tooling. This mirrors the evolution of traditional software engineering, where observability became non-negotiable for complex systems.
  2. Implement robust observability and evaluation frameworks from day one for any AI agent project. This prevents costly debugging cycles and ensures core algorithms function as intended, directly impacting performance and resource efficiency.
  3. Reliable AI agent development hinges on transparent monitoring and evaluation. Prioritizing these capabilities now will determine which organizations can successfully deploy and scale their AI initiatives over the next 6-12 months.
See full notes
January 31, 2026

State of AI in 2026: LLMs, Coding, Scaling Laws, China, Agents, GPUs, AGI | Lex Fridman Podcast #490

Lex Fridman

AI
Key Takeaways:
  1. The Macro Shift: Global AI pivots from raw model size to sophisticated post-training and efficient inference. China's open-weight models force a US strategy re-evaluation.
  2. The Tactical Edge: Invest in infrastructure and talent for RLVR and inference-time scaling. These frontiers enable new model capabilities and economic value.
  3. The Bottom Line: AI's relentless progress amplifies human capabilities. Focus on systems augmenting human expertise and navigating ethical complexities. Real value lies in intelligent collaboration.
See full notes
January 31, 2026

Inside a Chinese AI Lab: How MiniMax Builds Open Models

Turing Post

AI
Key Takeaways:
  1. Open-source AI is moving from theoretical research to production-grade agentic systems.
  2. Prioritize deep engineering talent and first-principles problem-solving over chasing algorithmic novelties.
  3. The next 6-12 months will separate the AI builders who can truly operationalize advanced models from those who can't.
See full notes
January 30, 2026

Anthropic’s Rise: Is OpenAI Losing Its Lead? w/ Patrick & Duncan

Milk Road AI

AI
Key Takeaways:
  1. Trillion-dollar AI compute investments create market divergence: immediate monetization (Meta) is rewarded, while slower conversion (Microsoft) faces skepticism, as geopolitical tensions rise over open-source model parity.
  2. Prioritize AI models balancing raw intelligence with superior user experience and collaborative features, as developer loyalty and enterprise adoption increasingly hinge on usability.
  3. The AI landscape is rapidly reordering. Investors and builders must assess monetization pathways, geopolitical implications, and AI's social contract over the next 6-12 months.
See full notes
January 29, 2026

AI math capabilities could be jagged for a long time – Daniel Litt

Epoch AI

AI
Key Takeaways:
  1. The collapse of trial costs turns scientific discovery into a search problem.
  2. Prioritize verifiable problems where AI can provide a clear reward signal.
  3. AI will solve mildly interesting problems soon, but the Big Ideas still require human marination.
See full notes
January 25, 2026

If You Can't See Inside, How Do You Know It's THINKING? [Dr. Jeff Beck]

Machine Learning Street Talk

AI
Key Takeaways:
  1. The Macro Trend: The transition from opaque scaling to verifiable reasoning.
  2. The Tactical Edge: Audit your models for brittleness by testing them on edge cases that require first principles logic rather than historical data.
  3. The Bottom Line: The next winners in AI will not have the biggest models but the most verifiable ones. If you cannot prove how a model reached a conclusion, you cannot trust it in production.
See full notes
January 23, 2026

Abstraction & Idealization: AI's Plato Problem [Mazviita Chirimuuta]

Machine Learning Street Talk

AI
Key Takeaways:
  1. Transition from "Spectator Knowledge" (passive data absorption) to "Interactive Knowledge" (agentic engagement).
  2. Prioritize "embodied" AI architectures that integrate sensory feedback loops.
  3. AGI will not be solved by better math alone. It requires accounting for the physical and biological constraints that define intelligence.
See full notes
January 23, 2026

Captaining IMO Gold, Deep Think, On-Policy RL, Feeling the AGI in Singapore — Yi Tay 2

Latent Space

AI
Key Takeaways:
  1. The transition from more data to better thinking via inference-time compute. Reasoning is becoming a post-training capability rather than a pre-training byproduct.
  2. Use AI for anti-gravity coding to automate bug fixes and data visualization. Treat the model as a passive aura that buffs the productivity of every senior engineer.
  3. AGI will not be a collection of narrow tools but a single model that reasons its way through any domain. The gap between closed labs and open source is widening as these reasoning tricks compound.
See full notes
January 21, 2026

"We Made a Dream Machine That Runs on Your Gaming PC"

Machine Learning Street Talk

AI
Key Takeaways:
  1. The transition from static LLMs to interactive world models marks the move from AI as a tool to AI as a persistent environment.
  2. Monitor the Hugging Face release of the 2B model to build custom image-to-experience wrappers for niche training or spatial entertainment.
  3. Local world models will become the primary interface for spatial computing within the next year, making high-end local compute more valuable than cloud-based streaming.
See full notes

Crypto Podcasts

February 25, 2025

The State Of Crypto & AI | Illia Polosukhin & Bowen Wang

Lightspeed

Crypto
AI
Infrastructure

Key Takeaways:

  • :
  • 1. NEAR is pioneering a unified blockchain infrastructure integrating AI, eliminating the need for multiple chains and enhancing user experience.
  • 2. The launch of NEAR 2.0 with fully sharded architecture and reduced block times positions NEAR as a scalable and high-performance blockchain platform.
  • 3. NEAR’s focus on chain abstraction and Trusted Execution Environments sets it apart from other blockchain and Layer 2 solutions, offering a more seamless and secure user experience.
See full notes
February 25, 2025

Futarchy Deep Dive: Can Markets Make Better Decisions? | Proph3t

Bell Curve

Crypto
AI
Others

Key Takeaways:

  • :
  • 1. Futarchy harnesses market efficiency to potentially outperform traditional governance in decision-making.
  • 2. Crypto’s regulatory resistance is essential for implementing innovative governance models like futarchy.
  • 3. Enhanced liquidity and decentralized capital formation are critical for the scalability and success of futarchy-based organizations.
See full notes
February 24, 2025

Where Does Crypto Go From Here? | EP 71

Good Game Podcast

Crypto
AI
Infrastructure

Key Takeaways:

  • 1. Focus on Financial Utility: Crypto's strongest and most sustainable applications remain within the financial sector, emphasizing the need for robust, revenue-generating projects over speculative tokens.
  • 2. Leverage AI for Innovation: Startups that effectively integrate AI to solve real-world problems, particularly in personalized applications, are poised for significant growth and competitive advantage.
  • 3. Embrace Tokenization: The future of equity and capital formation lies in tokenizing shares and streamlining IPO processes on-chain, presenting a transformative opportunity for startups and investors alike.
See full notes
February 24, 2025

Solana’s Vibe Shift, Restaking, and Yapping About Kaito | Ian Unsworth

0xResearch

Crypto
DeFi
AI

Key Takeaways:

  • :
  • 1. Solana’s Dependence on Meme Coins: While meme coins drive substantial revenue for Solana, they also introduce significant vulnerabilities amid changing market sentiments and regulatory pressures.
  • 2. Staking Yield Dynamics: Proposed reductions in staking yields are unlikely to trigger mass unstaking but will push the ecosystem towards more liquid and innovative staking solutions.
  • 3. Kaido’s Tokenomics Potential: Emerging platforms like Kaido offer novel tokenomics and AI integration, presenting new opportunities and challenges in monetizing user engagement and attention.
See full notes
February 24, 2025

Memes are Dead, Long Live the Memes | Nick Tomaino

Empire

Crypto
DeFi

Key Takeaways:

  • :
  • 1. Meme coins, while initially promising, often exploit retail investors through pump and dump schemes, necessitating a wary approach.
  • 2. Investing in crypto requires a long-term vision, focusing on meaningful projects and founders committed to sustained growth over fleeting gains.
  • 3. Stablecoins are pivotal in maintaining the US dollar's global influence and are set to grow with increasing adoption and regulatory support.
See full notes
February 24, 2025

How Sapien Lets Anyone Earn by Creating Datasets

Outpost | Crypto AI

AI
Crypto
Infrastructure

Key Takeaways:

  • 1. Decentralized data labeling can significantly reduce costs while enhancing data quality through global expert networks.
  • 2. The synergy between crypto and AI unlocks new possibilities for scalable and efficient AI model training.
  • 3. Proprietary, purpose-built datasets are becoming essential for enterprises to maintain a competitive edge in AI development.
See full notes