10 Hours of Listening.
5 Minutes of Reading.

Deep dives into the conversations shaping the future of AI, Robotics & Crypto.

Save hours of your time each week with our podcast aggregator

🔍 Search & Filter
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

AI Podcasts

January 8, 2026

Automating Large Scale Refactors with Parallel Agents - Robert Brennan, AllHands

AI Engineer

AI
Key Takeaways:
  1. Software maintenance is moving from a manual craft to an industrial process. As agents handle the toil of migrations and security, human engineers will focus entirely on high-level system design.
  2. Batch by Dependency. Use the OpenHands SDK to visualize your codebase as a graph and deploy agents to solve the leaf nodes first.
  3. Companies that master agent orchestration will clear their tech debt backlogs in weeks instead of years, creating a massive competitive advantage in product velocity.
See full notes
January 8, 2026

DSPy: The End of Prompt Engineering - Kevin Madura, AlixPartners

AI Engineer

AI
Key Takeaways:
  1. The Macro Trend: Software is moving from imperative instructions to declarative goals.
  2. The Tactical Edge: Port your most expensive GPT-4 prompts to DSPy signatures and run them through a BootstrapFewShot optimizer.
  3. The Bottom Line: Brittle prompts are the new technical debt. Building with a declarative framework ensures your system improves as models get cheaper.
See full notes
January 9, 2026

Spec-Driven Development: Sharpening your AI toolbox - Al Harris, Amazon Kiro

AI Engineer

AI
Key Takeaways:
  1. We are moving from probabilistic prompting to neurosymbolic reasoning where the LLM is a component of a larger structured system.
  2. Install MCP servers for your specific documentation and task trackers. Ground your agent in reality to reduce the manual verification loop.
  3. Engineering rigor is returning to the AI era. Builders who adopt structured workflows will outpace those stuck in the "prompt and pray" cycle.
See full notes
January 8, 2026

AI, markets, and power: A conversation with Paul Krugman

Azeem Azhar

AI
Key Takeaways:
  1. Capital is replacing labor as the primary driver of productivity.
  2. Prioritize investments in incumbents with massive distribution or lean startups that swap payroll for compute.
  3. The US remains the primary engine of growth but the internal divide between tech hubs and the hinterland will widen as AI concentrates wealth.
See full notes
January 9, 2026

Artificial Analysis: The Independent LLM Analysis House — with George Cameron and Micah Hill-Smith

Latent Space

AI
Key Takeaways:
  1. The decoupling of parameter count from active compute via sparsity means intelligence is becoming a software optimization problem as much as a hardware one.
  2. Audit your agentic workflows for turn efficiency rather than just cost per token.
  3. In a world of infinite tokens, the winner is the one who can verify the truth the fastest.
See full notes
January 7, 2026

Marc Andreessen's 2026 Outlook: AI Timelines, US vs. China, and The Price of AI

a16z

AI
Key Takeaways:
  1. The transition from "adding machines" to "human cognition" models is an 80-year correction finally hitting the vertical part of the S-curve.
  2. Prioritize application-specific models that backward-integrate into the stack.
  3. AI is a physical and digital build-out that will define the next decade of global power.
See full notes
January 6, 2026

Who Controls AI's Future? The Battle for GPU Access | CoreWeave SVP

Weights & Biases

AI
Key Takeaways:
  1. The transition from general-purpose compute to specialized AI infrastructure mirrors the rise of Snowflake in the data era.
  2. Audit your current cloud spend to identify where generalist latency is throttling your GPU goodput.
  3. Performance bars move every two years. If your infrastructure isn't purpose-built for AI today, you will be priced out of the market tomorrow.
See full notes
January 5, 2026

Welcome to AIE CODE - Jed Borovik, Google DeepMind

AI Engineer

AI
Key Takeaways:
  1. The Macro Pivot: The transition from LLMs as chat interfaces to LLMs as logic engines. As models move from text prediction to logic execution, the value moves from the model itself to the verification systems surrounding it.
  2. The Tactical Edge: Audit the stack. Prioritize the integration of agentic coding tools like Jules to shorten the feedback loop between ideation and deployment.
  3. The Bottom Line: Code is the only medium where AI can self-correct and scale without human intervention. The next 12 months will be defined by who can turn raw model power into reliable, self-healing code.
See full notes
January 5, 2026

Claude Agent SDK [Full Workshop] — Thariq Shihipar, Anthropic

AI Engineer

AI
Key Takeaways:
  1. Moving from "Model-as-a-Service" to "Environment-as-a-Service" where the harness matters as much as the weights.
  2. Replace your bespoke API tools with a single bash tool. Use a well-structured file system.
  3. The next year belongs to builders who stop treating LLMs as chatbots. They will treat them as system administrators.
See full notes

Crypto Podcasts

February 8, 2026

The Pro-Quantum Argument w/ Tyler Whittle

The Gwart Show

Crypto
Key Takeaways:
  1. The theoretical certainty of quantum computing, coupled with accelerating engineering breakthroughs, means the digital asset space must proactively build "crypto agility" into its core protocols. This ensures systems can adapt to new cryptographic standards as current ones become obsolete.
  2. Secure your Bitcoin by ensuring it resides in unspent SegWit or P2SH addresses, as these keep your public key hidden until spent. This provides a temporary shield against quantum attacks.
  3. Quantum computing is not a distant threat but a near-term risk with a 20% chance of moving Satoshi's coins by 2030. Ignoring this could lead to a systemic collapse of the "store of value" narrative for Bitcoin and other digital assets, forcing a costly and painful reset.
See full notes
February 8, 2026

If Bitcoin doesn't quantum-proof it will be EXPENSIVE

The Gwart Show

Crypto
Key Takeaways:
  1. The crypto industry must shift from viewing quantum as a distant threat to an imminent engineering challenge requiring proactive, coordinated defense.
  2. Ensure any long-term Bitcoin holdings are in SegWit addresses never spent from, as these public keys remain hashed and are currently more resistant to quantum attacks.
  3. A 20% chance of Satoshi's coins moving by 2030, and near certainty by 2035, means delaying upgrades is a multi-billion dollar bet against Bitcoin's core security narrative.
See full notes
February 7, 2026

Do We Still Need L2s Now That Ethereum Has Scaled? - Uneasy Money

Unchained

Crypto
Key Takeaways:
  1. Ethereum's L1 scaling redefines L2s from pure throughput solutions to specialized platforms, while AI agents introduce a new, autonomous layer of on-chain activity.
  2. Investigate L2s that offer unique features or cater to specific enterprise needs beyond just low fees.
  3. The future of crypto involves a more performant Ethereum L1, specialized L2s, and a burgeoning agentic economy.
See full notes
February 8, 2026

Want to Hire an AI Agent? Check Their Reputation Via ERC-8004

Unchained

Crypto
Key Takeaways:
  1. The rapid rise of autonomous AI agents demands a decentralized trust layer. Blockchains, initially an "internet of money," are now becoming the foundational "internet of trusted agent commerce," providing verifiable identity and reputation essential for multi-agent economies. This shift moves beyond simple payments to establishing a credible, censorship-resistant framework for AI-driven interactions.
  2. Integrate ERC-8004 into agent development. Builders should register their AI agents on ERC-8004 to establish verifiable on-chain identity and reputation, attracting trusted interactions and avoiding future centralized platform fees or censorship.
  3. The future of AI commerce hinges on decentralized trust. ERC-8004 is the foundational primitive for this, ensuring that as AI agents become more sophisticated and transact more value, the underlying infrastructure remains open, fair, and resistant to single points of control. This is a critical piece of the puzzle for anyone building or investing in the agent economy over the next 6-12 months.
See full notes
February 8, 2026

Hash Rate - Ep.157 - Mining Bittensor with OpenClaw

Hash Rate Podcast

Crypto
Key Takeaways:
  1. Agentic AI is not just a tool; it's a new layer of abstraction for decentralized networks. It shifts the barrier to entry from deep technical and crypto-specific knowledge to strategic prompting and resource allocation, accelerating network participation and value accrual.
  2. Experiment now. Deploy a hosted agentic AI like OpenClaw (via seafloor.bot) with a small budget to understand its capabilities in a controlled environment. Focus on automating complex setup tasks within decentralized AI protocols like Bittensor to gain firsthand experience before others.
  3. The rise of agentic AI agents will fundamentally reshape how individuals and organizations interact with and profit from decentralized AI. Those who master agent orchestration and "skill" development will capture disproportionate value as these systems become the primary interface for programmable intelligence and capital.
See full notes
February 7, 2026

Crypto’s Reality Check | Roundup

Bell Curve

Crypto
Key Takeaways:
  1. AI's gravitational pull on talent and capital is forcing crypto to mature beyond speculative tokenomics, transitioning focus from "meme value" to demonstrable product-market fit and real-world utility.
  2. Identify and invest in projects building at the intersection of crypto and AI, or those creating "net new" applications that abstract away crypto complexity for mainstream users, especially in areas like identity or fintech.
  3. This bear market is a necessary, albeit painful, reset. It's a time for builders to focus on creating tangible value and for investors to seek out projects with genuine utility, as the era of easy speculative gains is over.
See full notes