10 Hours of Listening.
5 Minutes of Reading.

Deep dives into the conversations shaping the future of AI, Robotics & Crypto.

Save hours of your time each week with our podcast aggregator

🔍 Search & Filter
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

AI Podcasts

September 19, 2025

Top AI Expert Reveals Best Deep Learning Strategies

Machine Learning Street Talk

AI
Key Takeaways:
  1. Stop Fearing Parameters. When in doubt, go bigger. Scale is not just about capacity; it’s a tool for inducing a powerful simplicity bias that improves generalization and paradoxically reduces overfitting.
  2. Trade Hard Constraints for Soft Biases. Instead of rigidly constraining your model architecture, use gentle encouragements. An expressive model with a soft simplicity bias will find the simple solution if the data supports it, while retaining the flexibility to capture true complexity.
  3. Think Like a Bayesian. Even if you don't run complex MCMC, adopt the core principle of marginalization. Techniques like ensembling or stochastic weight averaging approximate the benefits of considering multiple solutions, leading to more robust and generalizable models.
See full notes
September 19, 2025

Novelty Search September 18, 2025

taostats

AI
Key Takeaways:
  1. Reward Function is Everything. Mantis’s success hinges on its information-gain-based reward system, which attributes value based on a miner’s marginal contribution to a collective ensemble, not just their individual accuracy.
  2. Inherent Sybil Resistance. By rewarding unique signals, the incentive mechanism naturally discourages miners from running the same model across many UIDs, solving a critical vulnerability in decentralized AI networks.
  3. The Product is Verifiable Alpha. The endgame is not just to build a subnet but to produce a monetizable product: high-quality financial signals, auctioned to the highest bidder and backed by an immutable on-chain performance record.
See full notes
September 19, 2025

Bittensor Novelty Search :: SN123 MANTIS :: The Ultimate Signal Machine

The Opentensor Foundation | Bittensor TAO

AI
Key Takeaways:
  1. Incentives Dictate Intelligence. Mantis's breakthrough is its reward function. By precisely measuring a miner's marginal contribution, it makes unique alpha the only profitable strategy and naturally defends against Sybil attacks.
  2. The Ensemble is the Alpha. The network’s power lies not in finding one genius quant, but in combining many good-enough signals into one great one. The collective intelligence is designed to be far more valuable than any individual participant.
  3. The Future is Verifiable, On-Chain Alpha. Mantis plans to monetize by auctioning its predictive signals, creating a transparent marketplace for intelligence and proving that a decentralized network can produce a product valuable enough to compete with Wall Street's top firms.
See full notes
September 17, 2025

The Death of Search: How Shopping Will Work In The Age of AI

a16z

AI
Key Takeaways:
  1. Google's "Tax on GDP" Is Under Threat. AI is eroding the informational searches that feed Google's funnel and will eventually intercept high-intent commercial queries, redirecting economic power to new agentic platforms.
  2. The Future of Shopping Is Agentic, Not Search-Based. Consumers will delegate research and purchasing to specialized AI agents that optimize every variable, from product choice to payment method, fundamentally changing how brands acquire customers.
  3. Trust Is the Ultimate Moat. In a world of automated "crap," business models built on human trust and strict curation, like Costco's, become exceptionally defensible.
See full notes
September 15, 2025

Faster Science, Better Drugs

a16z

AI
Key Takeaways:
  1. AI's next frontier isn't just language; it's simulating life. The "virtual cell"—a model that predicts how to change a cell's state—is the industry's next "AlphaFold moment," aiming to compress drug discovery from years of lab work into forward passes of a neural network.
  2. Biology's core bottleneck is physical, not digital. Unlike pure software, progress is gated by the "lab-in-the-loop" reality: every AI prediction must be validated by slow, expensive physical experiments. Solving this requires new platforms that can scale the generation of high-quality biological data.
  3. The biotech business model needs a new playbook. With a 90% clinical trial failure rate, the economics are broken. The future belongs to companies that either A) use AI to drastically improve the hit rate of drug targets or B) tackle massive markets like obesity, where GLP-1s proved the prize is worth the squeeze.
See full notes
September 11, 2025

Inside OpenAI Enterprise: Forward Deployed Engineering, GPT-5, and More | BG2 Guest Interview

Bg2 Pod

AI
Key Takeaways:
  1. Enterprise AI is a Services Business. The best models are not enough. Success requires deep integration via "Forward Deployed Engineers" who build the necessary data scaffolding and orchestration layers.
  2. GPT-5 Was Co-developed with Customers. Its focus on "craft" (behavior, tone) over raw benchmarks was a direct result of an intensive feedback loop with enterprise partners, making it more practical for real-world use.
  3. Bet on Applications, Not Tooling. The speakers are short the entire category of AI tooling (frameworks, vector DBs), arguing the underlying tech stack is evolving too rapidly. Long-term value will accrue to those building applications in high-impact sectors like healthcare.
See full notes
September 10, 2025

Karl Friston - Why Intelligence Can't Get Too Large (Goldilocks principle)

Machine Learning Street Talk

AI
Key Takeaways:
  1. Intelligence Has a Size Limit: Forget galaxy-spanning superintelligences. The physics of self-organizing systems suggest intelligence thrives at a specific scale, unable to exist when systems become too large or too small.
  2. True Agency is Self-Inference: The crucial leap to higher intelligence is not just modeling the world, but modeling yourself as a cause within it. This recursive "strange loop" is the foundation of planning and agentic behavior.
  3. Hardware is the Software: Consciousness is not an algorithm you can run on any machine. It likely requires a specific physical substrate where memory and processing are unified, making the body and brain inseparable from the mind.
See full notes
September 10, 2025

Chris Dixon on How to Build Networks, Movements, and AI-Native Products

a16z

AI
Key Takeaways:
  1. **Ride the Wave, Don't Fight It.** Exponential forces like Moore's Law and network effects will overwhelm any product tactic. Your first job is to identify the fundamental technological or social current you're riding.
  2. **Build a Tool, Then a Network.** Defensibility in consumer tech often comes from network effects, but you can’t start there. Solve a user’s problem in single-player mode first to build the critical mass needed for an unbeatable network.
  3. **Explore the Fringe.** The future is being prototyped in niche subreddits and hobbyist communities. To find the next big thing, look for small groups of hyper-enthusiastic people working on things that seem like toys today.
See full notes
September 9, 2025

Mark Cuban on the NBA, Cost Plus Drugs, and How to Fix Politics

a16z

AI
Key Takeaways:
  1. Find the "Death War." Cuban's biggest wins come from identifying industries where competitors are forced to spend billions to survive (like AI today or streaming media rights a decade ago). These moments create massive opportunities for suppliers and disruptors.
  2. Sell a Better Life, Not an Ideology. Whether in politics or business, success comes from solving people’s immediate, tangible problems. Abstract goals and ideological purity don't sell.
  3. The Real Moat is Domain Expertise + AI. The next generation of billion-dollar companies will be built by founders who can apply AI to specific, overlooked business processes, creating hyper-efficient, customized SaaS solutions.
See full notes

Crypto Podcasts

February 9, 2026

MegaETH Live, Saylor Slippage & Tempo | Livestream

0xResearch

Crypto
Key Takeaways:
  1. The crypto industry is experiencing a gravitational pull towards institutionalization, where traditional finance and tech giants are increasingly building on or acquiring web3 infrastructure and talent.
  2. Monitor projects like MegaETH that are launching with clear, measurable KPIs for their token generation events.
  3. The next 6-12 months will see increased competition from well-capitalized, traditional players building on crypto rails, potentially limiting direct token exposure to fundamental infrastructure plays.
See full notes
February 9, 2026

MegaETH Mainnet is Live! — The Next Era of Ethereum Scaling

Bankless

Crypto
Key Takeaways:
  1. The Ethereum scaling narrative is evolving from L2s as mere L1 extensions to specialized, high-performance execution layers. This creates a barbell structure where Ethereum provides core security, and L2s deliver extreme throughput and novel features.
  2. Builders should explore high-performance L2s like MegaETH for applications requiring ultra-low latency and high transaction volumes, especially in gaming, DeFi, and AI agent interactions, where traditional fee models are prohibitive.
  3. MegaETH's mainnet launch, with its technical innovations and unconventional economic and app strategies, signals a new generation of L2s.
See full notes
February 8, 2026

The Pro-Quantum Argument w/ Tyler Whittle

The Gwart Show

Crypto
Key Takeaways:
  1. The theoretical certainty of quantum computing, coupled with accelerating engineering breakthroughs, means the digital asset space must proactively build "crypto agility" into its core protocols. This ensures systems can adapt to new cryptographic standards as current ones become obsolete.
  2. Secure your Bitcoin by ensuring it resides in unspent SegWit or P2SH addresses, as these keep your public key hidden until spent. This provides a temporary shield against quantum attacks.
  3. Quantum computing is not a distant threat but a near-term risk with a 20% chance of moving Satoshi's coins by 2030. Ignoring this could lead to a systemic collapse of the "store of value" narrative for Bitcoin and other digital assets, forcing a costly and painful reset.
See full notes
February 8, 2026

If Bitcoin doesn't quantum-proof it will be EXPENSIVE

The Gwart Show

Crypto
Key Takeaways:
  1. The crypto industry must shift from viewing quantum as a distant threat to an imminent engineering challenge requiring proactive, coordinated defense.
  2. Ensure any long-term Bitcoin holdings are in SegWit addresses never spent from, as these public keys remain hashed and are currently more resistant to quantum attacks.
  3. A 20% chance of Satoshi's coins moving by 2030, and near certainty by 2035, means delaying upgrades is a multi-billion dollar bet against Bitcoin's core security narrative.
See full notes
February 7, 2026

Do We Still Need L2s Now That Ethereum Has Scaled? - Uneasy Money

Unchained

Crypto
Key Takeaways:
  1. Ethereum's L1 scaling redefines L2s from pure throughput solutions to specialized platforms, while AI agents introduce a new, autonomous layer of on-chain activity.
  2. Investigate L2s that offer unique features or cater to specific enterprise needs beyond just low fees.
  3. The future of crypto involves a more performant Ethereum L1, specialized L2s, and a burgeoning agentic economy.
See full notes
February 8, 2026

Want to Hire an AI Agent? Check Their Reputation Via ERC-8004

Unchained

Crypto
Key Takeaways:
  1. The rapid rise of autonomous AI agents demands a decentralized trust layer. Blockchains, initially an "internet of money," are now becoming the foundational "internet of trusted agent commerce," providing verifiable identity and reputation essential for multi-agent economies. This shift moves beyond simple payments to establishing a credible, censorship-resistant framework for AI-driven interactions.
  2. Integrate ERC-8004 into agent development. Builders should register their AI agents on ERC-8004 to establish verifiable on-chain identity and reputation, attracting trusted interactions and avoiding future centralized platform fees or censorship.
  3. The future of AI commerce hinges on decentralized trust. ERC-8004 is the foundational primitive for this, ensuring that as AI agents become more sophisticated and transact more value, the underlying infrastructure remains open, fair, and resistant to single points of control. This is a critical piece of the puzzle for anyone building or investing in the agent economy over the next 6-12 months.
See full notes