10 Hours of Listening.
5 Minutes of Reading.

Deep dives into the conversations shaping the future of AI, Robotics & Crypto.

Save hours of your time each week with our podcast aggregator

🔍 Search & Filter
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

AI Podcasts

December 31, 2025

[State of Evals] LMArena's $100M Vision — Anastasios Angelopoulos, LMArena

Latent Space

AI
Key Takeaways:
  1. The Macro Trend: The transition from static benchmarks to live human-in-the-loop evaluation. As models saturate fixed tests, the only remaining signal is subjective human preference at scale.
  2. The Tactical Edge: Monitor secret model drops on Arena to spot frontier capabilities before official releases. This provides a lead time advantage for builders choosing their tech stack.
  3. The Bottom Line: Arena is the new kingmaker. If you are building AI products, their expert-tier data is the most reliable map for navigating the frontier.
See full notes
December 31, 2025

[State of Context Engineering] Agentic RAG, Context Rot, MCP, Subagents — Nina Lopatina, Contextual

Latent Space

AI
Key Takeaways:
  1. The move from small models to medium models (15B to 70B) suggests that reasoning capability is outstripping the desire for low-latency edge deployment.
  2. Implement instruction-following re-rankers to prune your context window. This prevents the model from getting confused by irrelevant data.
  3. Stop building toys. The next year belongs to those who can build full agentic systems that handle billions of tokens without losing the plot.
See full notes
December 31, 2025

[NeurIPS Best Paper] 1000 Layer Networks for Self-Supervised RL — Kevin Wang et al, Princeton

Latent Space

AI
Key Takeaways:
  1. The wall between RL and self-supervised learning is crumbling, leading to a unified "representation-first" approach to AI.
  2. Swap your reward-heavy objectives for contrastive representation learning to access deeper, more stable architectures.
  3. If you aren't planning for RL models with 100x the current depth, you're building for the past.
See full notes
December 31, 2025

[State of AI Papers 2025] Fixing Research with Social Signals, OCR & Implementation — Team AlphaXiv

Latent Space

AI
Key Takeaways:
  1. Academic research is transitioning from a "publish or perish" PDF culture to an "implement or ignore" code culture.
  2. Use AlphaXiv to filter research by social signal and implementation ease rather than just keyword relevance.
  3. The PDF is an antiquated artifact. In 2025, the value of a paper is measured by the speed at which a developer can spin up its Docker container.
See full notes
December 31, 2025

[State of MechInterp] SAEs in Production, Circuit Tracing, AI4Science, "Pragmatic" Interp — Goodfire

Latent Space

AI
Key Takeaways:
  1. The Macro Trend: The transition from black box scaling to transparent steering. As models enter regulated industries, the ability to prove why a model made a decision becomes more valuable than the decision itself.
  2. The Tactical Edge: Deploy sidecar models for monitoring. Instead of using expensive LLM-as-a-judge prompts, probe specific internal features to catch hallucinations at the activation level.
  3. The Bottom Line: The next year belongs to the pragmatic researchers. If you cannot explain your model's reasoning, you will not be allowed to deploy it in high-stakes environments.
See full notes
December 31, 2025

[State of Code Evals] After SWE-bench, Code Clash & SOTA Coding Benchmarks recap — John Yang

Latent Space

AI
Key Takeaways:
  1. The transition from completion to agency requires moving from static repos to active, economically valuable environments.
  2. Prioritize agentic workflows that emphasize codebase understanding over simple code generation.
  3. The next 12 months will see a move from stunt autonomy to integrated human-AI systems that handle long-running tasks without losing the human intent.
See full notes
December 31, 2025

[State of Research Funding] Beyond NSF, Slingshots, Open Frontiers — Andy Konwinski, Laude Institute

Latent Space

AI
Key Takeaways:
  1. The transition from monolithic models to compound systems means the value is migrating to the orchestration and context layer.
  2. Prioritize tools like DSPy and context management frameworks to build high-leverage applications that do not depend on proprietary model updates.
  3. Open research is the only way to maintain a competitive edge. If the US stops publishing, it stops leading.
See full notes
December 31, 2025

Infinity, Paradoxes, Gödel Incompleteness & the Mathematical Multiverse | Lex Fridman Podcast #488

Lex Fridman

AI
Key Takeaways:
  1. From Singular Logic to Pluralistic Systems. As we build complex AI, we must move from seeking one "correct" model to managing a multiverse of conflicting but internally consistent logical frameworks.
  2. Audit for Incompleteness. When designing protocols, identify the "independent" variables that your system cannot prove or settle internally.
  3. Truth is bigger than code. Over the next year, the winners will be those who stop trying to "solve" the universe and start navigating the multiverse of possible truths.
See full notes
December 31, 2025

AI in 2026: 3 Predictions For What’s To Come (a16z Big Ideas)

a16z

AI
Key Takeaways:
  1. Outcome-Based Intelligence. We are moving from AI as a Service to AI as an Outcome where value is tied to results rather than usage.
  2. Target Non-Public Data. Build applications in sectors like law or lending where the most valuable data is private and un-crawlable.
  3. The next two years will separate companies that use AI to save pennies from those that use AI to capture entire markets through autonomous systems and proprietary data loops.
See full notes

Crypto Podcasts

February 8, 2026

The Pro-Quantum Argument w/ Tyler Whittle

The Gwart Show

Crypto
Key Takeaways:
  1. The theoretical certainty of quantum computing, coupled with accelerating engineering breakthroughs, means the digital asset space must proactively build "crypto agility" into its core protocols. This ensures systems can adapt to new cryptographic standards as current ones become obsolete.
  2. Secure your Bitcoin by ensuring it resides in unspent SegWit or P2SH addresses, as these keep your public key hidden until spent. This provides a temporary shield against quantum attacks.
  3. Quantum computing is not a distant threat but a near-term risk with a 20% chance of moving Satoshi's coins by 2030. Ignoring this could lead to a systemic collapse of the "store of value" narrative for Bitcoin and other digital assets, forcing a costly and painful reset.
See full notes
February 8, 2026

If Bitcoin doesn't quantum-proof it will be EXPENSIVE

The Gwart Show

Crypto
Key Takeaways:
  1. The crypto industry must shift from viewing quantum as a distant threat to an imminent engineering challenge requiring proactive, coordinated defense.
  2. Ensure any long-term Bitcoin holdings are in SegWit addresses never spent from, as these public keys remain hashed and are currently more resistant to quantum attacks.
  3. A 20% chance of Satoshi's coins moving by 2030, and near certainty by 2035, means delaying upgrades is a multi-billion dollar bet against Bitcoin's core security narrative.
See full notes
February 7, 2026

Do We Still Need L2s Now That Ethereum Has Scaled? - Uneasy Money

Unchained

Crypto
Key Takeaways:
  1. Ethereum's L1 scaling redefines L2s from pure throughput solutions to specialized platforms, while AI agents introduce a new, autonomous layer of on-chain activity.
  2. Investigate L2s that offer unique features or cater to specific enterprise needs beyond just low fees.
  3. The future of crypto involves a more performant Ethereum L1, specialized L2s, and a burgeoning agentic economy.
See full notes
February 8, 2026

Want to Hire an AI Agent? Check Their Reputation Via ERC-8004

Unchained

Crypto
Key Takeaways:
  1. The rapid rise of autonomous AI agents demands a decentralized trust layer. Blockchains, initially an "internet of money," are now becoming the foundational "internet of trusted agent commerce," providing verifiable identity and reputation essential for multi-agent economies. This shift moves beyond simple payments to establishing a credible, censorship-resistant framework for AI-driven interactions.
  2. Integrate ERC-8004 into agent development. Builders should register their AI agents on ERC-8004 to establish verifiable on-chain identity and reputation, attracting trusted interactions and avoiding future centralized platform fees or censorship.
  3. The future of AI commerce hinges on decentralized trust. ERC-8004 is the foundational primitive for this, ensuring that as AI agents become more sophisticated and transact more value, the underlying infrastructure remains open, fair, and resistant to single points of control. This is a critical piece of the puzzle for anyone building or investing in the agent economy over the next 6-12 months.
See full notes
February 8, 2026

Hash Rate - Ep.157 - Mining Bittensor with OpenClaw

Hash Rate Podcast

Crypto
Key Takeaways:
  1. Agentic AI is not just a tool; it's a new layer of abstraction for decentralized networks. It shifts the barrier to entry from deep technical and crypto-specific knowledge to strategic prompting and resource allocation, accelerating network participation and value accrual.
  2. Experiment now. Deploy a hosted agentic AI like OpenClaw (via seafloor.bot) with a small budget to understand its capabilities in a controlled environment. Focus on automating complex setup tasks within decentralized AI protocols like Bittensor to gain firsthand experience before others.
  3. The rise of agentic AI agents will fundamentally reshape how individuals and organizations interact with and profit from decentralized AI. Those who master agent orchestration and "skill" development will capture disproportionate value as these systems become the primary interface for programmable intelligence and capital.
See full notes
February 7, 2026

Crypto’s Reality Check | Roundup

Bell Curve

Crypto
Key Takeaways:
  1. AI's gravitational pull on talent and capital is forcing crypto to mature beyond speculative tokenomics, transitioning focus from "meme value" to demonstrable product-market fit and real-world utility.
  2. Identify and invest in projects building at the intersection of crypto and AI, or those creating "net new" applications that abstract away crypto complexity for mainstream users, especially in areas like identity or fintech.
  3. This bear market is a necessary, albeit painful, reset. It's a time for builders to focus on creating tangible value and for investors to seek out projects with genuine utility, as the era of easy speculative gains is over.
See full notes